Do you want to publish a course? Click here

Radiation from Particles Accelerated in Relativistic Jet Shocks and Shear-flows

116   0   0.0 ( 0 )
 Added by Ken-Ichi Nishikawa
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jets initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing Global jet simulations containing shocks and velocity shears will provide us with the ability to calculate and model the complex time evolution and/or spectral structure observed from gamma-ray bursts, AGN jets, and supernova remnants.



rate research

Read More

We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Strong magnetic fields generated in the trailing jet shock lead to transverse deflection and acceleration of the electrons. We have self-consistently calculated the radiation from the electrons accelerated in the turbulent magnetic fields. We find that the synthetic spectra depend on the bulk Lorentz factor of the jet, the jet temperature, and the strength of the magnetic fields generated in the shock. We have also begun study of electron acceleration in the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) instabilities. Our calculated spectra should lead to a better understanding of the complex time evolution and/or spectral structure from gamma-ray bursts, relativistic jets, and supernova remnants.
We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have lost memory of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or $tau simeq 1$ surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this $tau simeq 1$ surface exactly conserves photon number, and derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy-momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy-momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on simulations with a small system. We obtained spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields with red noise. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system generates a jitter/synchrotron spectrum.
Particle energization in shear flows is invoked to explain non-thermal emission from the boundaries of relativistic astrophysical jets. Yet, the physics of particle injection, i.e., the mechanism that allows thermal particles to participate in shear-driven acceleration, remains unknown. With particle-in-cell simulations, we study the development of Kelvin-Helmholtz (KH) instabilities seeded by the velocity shear between a relativistic magnetically-dominated electron-positron jet and a weakly magnetized electron-ion ambient plasma. We show that, in their nonlinear stages, KH vortices generate kinetic-scale reconnection layers, which efficiently energize the jet particles, thus providing a first-principles mechanism for particle injection into shear-driven acceleration. Our work lends support to spine-sheath models of jet emission - with a fast core/spine surrounded by a slower sheath - and can explain the origin of radio-emitting electrons at the boundaries of relativistic jets.
88 - Martin Lemoine 2019
In this third paper of a series, we discuss the physics of the population of accelerated particles in the precursor of an unmagnetized, relativistic collisionless pair shock. In particular, we provide a theoretical estimate of their scattering length $l_{scatt}(p)$ in the self-generated electromagnetic turbulence, as well as an estimate of their distribution function. We obtain $l_{scatt}(p) simeq (gamma_p /epsilon_B)(p/gamma_{infty} mc)^2 (c/omega_p)$, with p the particle momentum in the rest frame of the shock front, $epsilon_B$ the strength parameter of the microturbulence, $gamma_p$ the Lorentz factor of the background plasma relative to the shock front and $gamma_{infty}$ its asymptotic value outside the precursor. We compare this scattering length to large-scale PIC simulations and find good agreement for the various dependencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا