Do you want to publish a course? Click here

Local Smoothing Estimates near a Trapped Set with Infinitely Many Connected Components

90   0   0.0 ( 0 )
 Added by Dylan Muckerman
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We prove a local smoothing result for the Schrodinger equation on a class of surfaces of revolution which have infinitely many trapped geodesics. Our main result is a local smoothing estimate with loss (compared to cite{ChMe-lsm}) depending on the accumulation rate of the critical points of the profile curve. The proof uses an h-dependent version of semiclassical propagation of singularities, and a result on gluing an h-dependent number of cutoff resolvent estimates.



rate research

Read More

We consider a family of spherically symmetric, asymptotically Euclidean manifolds with two trapped sets, one which is unstable and one which is semi-stable. The phase space structure is that of an inflection transmission set. We prove a sharp local smoothing estimate for the linear Schrodinger equation with a loss which depends on how flat the manifold is near each of the trapped sets. The result interpolates between the family of similar estimates in cite{ChWu-lsm}. As a consequence of the techniques of proof, we also show a sharp high energy resolvent estimate with a polynomial loss depending on how flat the manifold is near each of the trapped sets.
This article constructs a surface whose Neumann-Poincare (NP) integral operator has infinitely many eigenvalues embedded in its essential spectrum. The surface is a sphere perturbed by smoothly attaching a conical singularity, which imparts essential spectrum. Rotational symmetry allows a decomposition of the operator into Fourier components. Eigenvalues of infinitely many Fourier components are constructed so that they lie within the essential spectrum of other Fourier components and thus within the essential spectrum of the full NP operator. The proof requires the perturbation to be sufficiently small, with controlled curvature, and the conical singularity to be sufficiently flat.
In this paper we show how to obtain decay estimates for the damped wave equation on a compact manifold without geometric control via knowledge of the dynamics near the un-damped set. We show that if replacing the damping term with a higher-order emph{complex absorbing potential} gives an operator enjoying polynomial resolvent bounds on the real axis, then the resolvent associated to our damped problem enjoys bounds of the same order. It is known that the necessary estimates with complex absorbing potential can also be obtained via gluing from estimates for corresponding non-compact models.
127 - Neal Bez , Mitsuru Sugimoto 2012
We establish new results concerning the existence of extremisers for a broad class of smoothing estimates of the form $|psi(| abla|) exp(itphi(| abla|)f |_{L^2(w)} leq C|f|_{L^2}$, where the weight $w$ is radial and depends only on the spatial variable; such a smoothing estimate is of course equivalent to the $L^2$-boundedness of a certain oscillatory integral operator $S$ depending on $(w,psi,phi)$. Furthermore, when $w$ is homogeneous, and for certain $(psi,phi)$, we provide an explicit spectral decomposition of $S^*S$ and consequently recover an explicit formula for the optimal constant $C$ and a characterisation of extremisers. In certain well-studied cases when $w$ is inhomogeneous, we obtain new expressions for the optimal constant.
We prove the existence of infinitely many nonnegative solutions to the following nonlocal elliptic partial differential equation involving singularities begin{align} (-Delta)_{p(cdot)}^{s} u&=frac{lambda}{|u|^{gamma(x)-1}u}+f(x,u)~text{in}~Omega, onumber u&=0~text{in}~mathbb{R}^NsetminusOmega, onumber end{align} where $Omegasubsetmathbb{R}^N,, Ngeq2$ is a smooth, bounded domain, $lambda>0$, $sin (0,1)$, $gamma(x)in(0,1)$ for all $xinbar{Omega}$, $N>sp(x,y)$ for all $(x,y)inbar{Omega}timesbar{Omega}$ and $(-Delta)_{p(cdot)}^{s}$ is the fractional $p(cdot)$-Laplacian operator with variable exponent. The nonlinear function $f$ satisfies certain growth conditions. Moreover, we establish a uniform $L^{infty}(bar{Omega})$ estimate of the solution(s) by the Moser iteration technique.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا