Do you want to publish a course? Click here

Black rings in global anti-de Sitter space

179   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating that they should be unstable under superradiance. At high temperatures, the limit $| Omega_H ell | searrow 1$ is attained by thin rings with an arbitrarily large radius. However, at sufficiently low temperatures, this limit is saturated by a new kind of rings, whose outer circle can still be arbitrarily long while the hole in the middle does not grow proportionally. This gives rise to a membrane-like horizon geometry, which does not have an asymptotically flat counterpart. We find no evidence for thin AdS black rings whose transverse $S^2$ is much larger than the radius of AdS, $ell$, and thus these solutions never fall into the hydrodynamic regime of the dual CFT. Thermodynamically, we find that AdS black rings never dominate the grand canonical ensemble. The behaviour of our solutions in the microcanonical ensemble approaches known perturbative results in the thin-ring limit.



rate research

Read More

We consider particle production in $1+1$ dimensional thermal Anti-de Sitter space under the influence of a constant electric field. The vacuum-persistence amplitude is given by a non-relativistic tunnelling instanton once we interpret the system as being governed by an equivalent non-relativistic Schrodinger equation. Working in the WKB approximation, we calculate the tunnelling rate in anti de Sitter space at finite temperature and observe that the particle production rate is enhanced. Additionally, it is observed that there is a critical temperature beyond which the production rate is affected by the thermal environment. We claim this to be a new result for Anti-de Sitter space in the semi-classical approximation.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
94 - B. Harms , A. Stern 2016
We obtain numerical solutions for rotating topological solitons of the nonlinear $sigma$-model in three-dimensional Anti-de Sitter space. Two types of solutions, $i)$ and $ii)$, are found. The $sigma$-model fields are everywhere well defined for both types of solutions, but they differ in their space-time domains. Any time slice of the space-time for the type $i)$ solution has a causal singularity, despite the fact that all scalars constructed the curvature tensor are bounded functions. No evidence of a horizon is seen for any of the solutions, and therefore the type $i)$ solutions have naked singularities. On the other hand, the space-time domain, along with the fields, for the type $ii)$ solutions are singularity free. Multiple families of solutions exhibiting bifurcation phenomena are found for this case.
We study the pair production of charged scalar particles from the five-dimensional near extremal Reissner- Nordstrom-Anti de Sitter (RN-AdS5) black hole. The pair production rate and the absorption cross section ratio in the full spacetime are obtained and are shown to have proportional relation with their counterparts in the near horizon region. In addition, the holographic descriptions of the pair production both in the IR CFT in the near horizon region and the UV CFT at the asymptotic spatial boundary of the RN-AdS5 black hole are analyzed in the AdS2/CFT1and AdS5/CFT4correspondences, respectively. This work gives a complete description of scalar pair production in the near extremal RN-AdS5black hole.
We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametrizations of the boundary. These symmetries are spontaneously broken by the $AdS_2$ geometry and they are explicitly broken by the small deformation away from $AdS_2$. This pattern of spontaneous plus explicit symmetry breaking governs the gravitational backreaction of the system. It determines several gravitational properties such as the linear in temperature dependence of the near extremal entropy as well as the gravitational corrections to correlation functions. These corrections include the ones determining the growth of out of time order correlators that is indicative of chaos. These gravitational aspects can be described in terms of a Schwarzian derivative effective action for a reparametrization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا