Do you want to publish a course? Click here

High-Mobility Bismuth-based Transparent P-Type Oxide from High-throughput Material Screening

231   0   0.0 ( 0 )
 Added by Geoffroy Hautier
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transparent oxides are essential building blocks to many technologies, ranging from components in transparent electronics, transparent conductors, to absorbers and protection layers in photovoltaics and photoelectrochemical devices. However, thus far, it has been difficult to develop p-type oxides with wide band gap and high hole mobility; current state-of-art transparent p-type oxides have hole mobility in the range of < 10 cm$^2$/Vs, much lower than their n-type counterparts. Using high-throughput computational screening to guide the discovery of novel oxides with wide band gap and high hole mobility, we report the computational identification and the experimental verification of a bismuth-based double-perovskite oxide that meets these requirements. Our identified candidate, Ba$_2$BiTaO$_6$, has an optical band gap larger than 4 eV and a Hall hole mobility above 30 cm$^2$/Vs. We rationalize this finding with molecular orbital intuitions; Bi$^{3+}$ with filled s-orbitals strongly overlap with the oxygen p, increasing the extent of the metal-oxygen covalency and effectively reducing the valence effective mass, while Ta$^{5+}$ forms a conduction band with low electronegativity, leading to a high band gap beyond the visible range. Our concerted theory-experiment effort points to the growing utility of a data-driven materials discovery and the combination of both informatics and chemical intuitions as a way to discover future technological materials.



rate research

Read More

Transparent oxide semiconductors (TOSs) showing both high visible transparency and high electron mobility have attracted great attention towards the realization of advanced optoelectronic devices. La-doped BaSnO3 (LBSO) is one of the most promising TOSs because its single crystal exhibits a high electron mobility. However, in the LBSO films, it is very hard to obtain high mobility due to the threading dislocations, which are originated from the lattice mismatch between the film and the substrate. Therefore, many researchers have tried to improve the mobility by inserting a buffer layer. While the buffer layers increased the electron mobilities, this approach leaves much to be desired since it involves a two-step film fabrication process and the enhanced mobility values are still significantly lower than single crystal values. We show herein that the electron mobility of LBSO films can be improved without inserting any buffer layers if the films are grown under highly oxidative ozone (O3) atmospheres. The O3 environments relaxed the LBSO lattice and reduced the formation of Sn2+ states, which are known to suppress the electron mobility in LBSO. The resultant O3-LBSO films showed improved mobility values up to 115 cm2 V-1 s-1, which is among the highest in LBSO films on SrTiO3 substrates and comparable to LBSO films with buffer layers.
Based on irreducible representations (or symmetry eigenvalues) and compatibility relations, a material can be predicted to be a topological/trivial insulator [satisfying compatibility relations] or a topological semimetal [violating compatibility relations]. However, Weyl semimetals usually go beyond this symmetry-based strategy. In other words, Weyl nodes could emerge in a material, no matter if its occupied bands satisfy compatibility relations, or if the symmetry indicators are zero. In this work, we propose a new topological invariant $chi$ for the systems with S$_4$ symmetry [i.e., the improper rotation S$_4$ ($equiv$ IC$_{4z}$) is a proper four-fold rotation (C$_{4z}$) followed by inversion (I)], which can be used to diagnose the Weyl semimetal phase. Moreover, $chi$ can be easily computed through the one-dimensional Wilson-loop technique. By applying this method to the high-throughput screening in first-principles calculations, we predict a lot of Weyl semimetals in both nonmagnetic and magnetic compounds. Various interesting properties (e.g. magnetic frustration effects, superconductivity and spin-glass order, etc.) are found in predicted Weyl semimetals, which provide realistic platforms for future experimental study of the interplay between Weyl fermions and other exotic states.
The high-throughput (HT) computational method is a useful tool to screen high performance functional materials. In this work, using the deformation potential method under the single band model, we evaluate the carrier relaxation time and establish an electrical descriptor (c{hi}) characterized by the carrier effective masses based on the simple rigid band approximation. The descriptor (c{hi}) can be used to reasonably represent the maximum power factor without solving the electron Boltzmann transport equation. Additionally, the Gruneisen parameter ({gamma}), a descriptor of the lattice anharmonicity and lattice thermal conductivity, is efficiently evaluated using the elastic properties, omitting the costly phonon calculations. Applying two descriptors (c{hi} and {gamma}) to binary chalcogenides, we HT compute 243 semiconductors and screen 50 promising thermoelectric materials. For these theoretically determined compounds, we successfully predict some previously experimentally and theoretically investigated promising thermoelectric materials. Additionally, 9 p-type and 14 n-type previously unreported binary chalcogenides are also predicted as promising thermoelectric materials. Our work provides not only new thermoelectric candidates with perfect crystalline structure for the future investigations, but also reliable descriptors to HT screen high performance thermoelectric materials.
74 - Qiang Gao , Ingo Opahle , 2018
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi). Following the empirical rule, we focused on compounds with 21, 26, or 28 valence electrons, resulting in 12, 000 possible chemical compositions. After systematically evaluating the thermodynamic, mechanical, and dynamical stabilities, we successfully identified 70 stable SGSs, confirmed by explicit electronic structure calculations with proper magnetic ground states. It is demonstrated that all four types of SGSs can be realized, defined based on the spin characters of the bands around the Fermi energy, and the type-II SGSs show promising transport properties for spintronic applications. The effect of spin-orbit coupling is investigated, resulting in large anisotropic magnetoresistance and anomalous Nernst effects.
Great enthusiasm in single atom catalysts (SACs) for the N2 reduction reaction (NRR) has been aroused by the discovery of Metal (M)-Nx as a promising catalytic center. However,the performance of available SACs,including poor activity and selectivity,is far away from the industrial requirement because of the inappropriate adsorption behaviors of the catalytic centers. Through the first principles high throughput screening, we find that the rational construction of Fe-Fe dual atom centered site distributed on graphite carbon nitride (Fe2/gCN) compromises the ability to adsorb N2H and NH2, achieving the best NRR performance among 23 different transition metal (TM) centers. Our results show that Fe2/gCN can achieve a Faradic efficiency of 100% for NH3 production. Impressively, the limiting potential of Fe2/gCN is estimated as low as -0.13 V, which is hitherto the lowest value among the reported theoretical results. Multiple level descriptors (excess electrons on the adsorbed N2 and integrated crystal orbital Hamilton population) shed light on the origin of NRR activity from the view of energy, electronic structure, and basic characteristics. As a ubiquitous issue during electrocatalytic NRR, ammonia contamination originating from the substrate decomposition can be surmounted. Our predictions offer a new platform for electrocatalytic synthesis of NH3, contributing to further elucidate the structure-performance correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا