Unshifted Metastable He I* Mini-Broad Absorption Line System in the Narrow Line Type 1 Quasar SDSS J080248.18$+$551328.9


Abstract in English

We report the identification of an unusual absorption line system in the quasar SDSS J080248.18$+$551328.9 and present a detailed study of the system, incorporating follow-up optical and NIR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II* and Ni II* that arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width $Delta vsim 1,500$km s$^{-1}$ centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of $n_{rm H} sim (1.0-2.5)times 10^5~ {rm cm}^{-3}$ and a column density of $N_{rm H} sim (1.0-3.2)times 10^{21} sim {rm cm}^{-2}$, and is located at $Rsim100-250$ pc from the central super-massive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption and emission line centroid jointly suggest that the absorption gas is originated from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds zhy{and/or} supernova explosions. The implications for the detection of such a peculiar absorption line system in an NLS1 are discussed in the context of co-evolution between super-massive black hole growth and host galaxy build-up.

Download