Do you want to publish a course? Click here

The classification of frequencies in the {gamma} Doradus / {delta} Scuti hybrid star HD 49434

133   0   0.0 ( 0 )
 Added by Emily Brunsden
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hybrid stars of the {gamma} Doradus and {delta} Scuti pulsation types have great potential for asteroseismic analysis to explore their interior structure. To achieve this, mode identi- fications of pulsational frequencies observed in the stars must be made, a task which is far from simple. In this work we begin the analysis by scrutinizing the frequencies found in the CoRoT photometric satellite measurements and ground-based high-resolution spectroscopy of the hybrid star HD 49434. The results show almost no consistency between the frequencies found using the two techniques and no characteristic period spacings or couplings were identified in either dataset. The spectroscopic data additionally show no evidence for any long term (5 year) variation in the dominant frequency. The 31 spectroscopic frequencies identified have standard deviation profiles suggesting multiple modes sharing (l, m) in the {delta} Scuti frequency region and several skewed modes sharing the same (l, m) in the {gamma} Doradus frequency region. In addition, there is a clear frequency in the {gamma} Doradus frequency region that appears to be unrelated to the others. We conclude HD 49434 remains a {delta} Scuti/ {gamma} Doradus candidate hybrid star but more sophisticated models dealing with rotation are sought to obtain a clear picture of the pulsational behaviour of this star.



rate research

Read More

Low frequency oscillation, typical for Gamma Doradus g-mode type stellar core sensitive pulsation, as well as higher frequency Delta Scuti type pulsation typical for p-modes, sensitive to the envelope, make HD 8801 a remarkable hybrid pulsator with the potential to probe a stellar structure over a wide range of radius. In addition HD 8801 is a rare pulsating metallic line (Am) star. We determined the astrophysical fundamental parameters to locate HD 8801 in the HR diagram. We analyzed the element abundances, paying close attention to the errors involved, and confirm the nature of HD 8801 as a metallic line (Am) star. We also determined an upper limit on the magnetic field strength. Our abundance analysis is based on classical techniques, but uses for the final step a model atmosphere calculated with the abundances determined by us. We also discuss spectropolarimetric observations obtained for HD 8801. This object is remarkable in several respects. It is a non-magnetic metallic line (Am) star, pulsating simultaneously in p- and g-modes, but also shows oscillations with periods in between these two domains, whose excitation requires explanation. Overall, the pulsational incidence in unevolved classical Am stars is believed to be quite low; HD 8801 does not conform to this picture. Finally, about 75% of Am stars are located in short-period binaries, but there is no evidence that HD 8801 has a companion.
152 - M.-P. Bouabid 2009
Gamma Doradus are F-type stars pulsating with high order g-modes. Their instability strip (IS) overlaps the red edge of the delta Scuti one. This observation has led to search for objects in this region of the HR diagram showing p and g-modes simultaneously. The existence of such hybrid pulsators has recently been confirmed (Handler 2009) and the number of candidates is increasing (Matthews 2007). From a theoretical point of view, non-adiabatic computations including a time-dependent treatment of convection (TDC) predict the existence of gamma Dor/delta Sct hybrid pulsators (Dupret et al. 2004; Grigahcene et al. 2006). Our aim is to confront the properties of the observed hybrid candidates with the theoretical predictions from non-adiabatic computations of non-radial pulsations including the convection-pulsation interaction.
The eclipsing delta-Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. From a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign we have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level in the range between 100-300 uHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system.
The bRing robotic observatory network was built to search for circumplanetary material within the transiting Hill sphere of the exoplanet $beta$ Pic b across its bright host star $beta$ Pic. During the bRing survey of $beta$ Pic, it simultaneously monitored the brightnesses of thousands of bright stars in the southern sky ($V$ $simeq$ 4-8, $delta$ $lesssim$ -30$^{circ}$). In this work, we announce the discovery of $delta$ Scuti pulsations in the A-type star HD 156623 using bRing data. HD 156623 is notable as it is a well-studied young star with a dusty and gas-rich debris disk, previously detected using ALMA. We present the observational results on the pulsation periods and amplitudes for HD 156623, discuss its evolutionary status, and provide further constraints on its nature and age. We find strong evidence of frequency regularity and grouping. We do not find evidence of frequency, amplitude, or phase modulation for any of the frequencies over the course of the observations. We show that HD 156623 is consistent with other hot and high frequency pre-MS and early ZAMS $delta$ Scutis as predicted by theoretical models and corresponding evolutionary tracks, although we observe that HD 156623 lies hotter than the theoretical blue edge of the classical instability strip. This, coupled with our characterization and Sco-Cen membership analyses, suggest that the star is most likely an outlying ZAMS member of the $sim$16 Myr Upper Centaurus-Lupus subgroup of the Sco-Cen association.
Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main sequence $gamma$ Doradus (Dor) and $delta$ Scuti (Sct) stars with masses 1.2-2.5 $M_{sun}$ are particularly useful for these studies. The $gamma$ Dor stars pulsate in high-order $g$ modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The $delta$ Sct stars pulsate in low-order $g$ and $p$ modes with periods of order 2 hours, driven by the $kappa$ mechanism operating in the Heii ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where hybrid stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known $gamma$ Dor and $delta$ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure $delta$ Sct or $gamma$ Dor pulsators, i.e. essentially all of the stars show frequencies in both the $delta$ Sct and $gamma$ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency, and is applied to categorize 234 stars as $delta$ Sct, $gamma$ Dor, $delta$ Sct/$gamma$ Dor or $gamma$ Dor/$delta$ Sct hybrids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا