Ferromagnetic behavior of the Kondo lattice compound $Np_2PtGa_3$


Abstract in English

In this study we report the results of study of novel ternary $Np_2PtGa_3$ compound. The x-ray-powder diffraction analysis reveals that the compound crystallizes in the orthorhombic CeCu$_2$-type crystal structure (space group Imma) with lattice parameters $a$ = 0.4409(2) nm, $b$ = 0.7077(3) nm and $c$ = 0.7683(3) nm at room temperature. The measurements of dc magnetization, specific heat and electron transport properties in the temperature range 1.7 - 300 K and in magnetic fields up to 9 T imply that this intermetallic compound belongs to a class of ferromagnetic Kondo systems. The Curie temperature of $T_C sim$ 26 K is determined from the magnetization and specific heat data. An enhanced coefficient of the electronic specific heat of $gamma$ = 180 mJ/(mol at. Np K$^2$) and -lnT dependence of the electrical resistivity indicate the presence of Kondo effect, which can be described in terms of the S = 1 underscreened Kondo-lattice model. The estimated Kondo temperature $T_K sim$ 24 K, Hall mobility of $sim$ 16.8 cm$^2$/Vs and effective mass of $sim$ 83 $m_e$ are consistent with assumption that the heavy-fermion state develops in $Np_2PtGa_3$ at low temperatures. We compare the observed properties of $Np_2PtGa_3$ to that found in $Np_2PtGa_3$ and discuss their difference in regard to change in the exchange interaction between the conduction and localized 5f electrons. We have used the Fermi wave vector $k_F$ to evaluate the Rudermann-Kittel-Kasuya-Yosida (RKKY) exchange. Based on experimental data of the (U, Np)$_2$(Pd, Pt)Ga$_3$ compounds we suggest that the evolution of the magnetic ground states in these actinide compounds can be explained within the RKKY formalism.

Download