We extend our work on nonseparated interpolating sequences, originally developed for Bergman spaces with weights of the form $(1 - |z|^2)^alpha$, to more general weights.
Most characterizations of interpolating sequences for Bergman spaces include the condition that the sequence be uniformly discrete in the hyperbolic metric. We show that if the notion of interpolation is suitably generalized, two of these characterizations remain valid without that condition. The general interpolation we consider here includes the usual simple interpolation and multiple interpolation as special cases.
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
We study the boundedness and compactness of the generalized Volterra integral operator on weighted Bergman spaces with doubling weights on the unit disk. A generalized Toeplitz operator is defined and the boundedness, compactness and Schatten class of this operator are investigated on the Hilbert weighted Bergman space. As an application, Schatten class membership of generalized Volterra integral operators are also characterized. Finally, we also get the characterizations of Schatten class membership of generalized Toeplitz operator and generalized Volterra integral operators on the Hardy space $H^2$.
In this paper we consider interpolation in model spaces, $H^2 ominus B H^2$ with $B$ a Blaschke product. We study unions of interpolating sequences for two sequences that are far from each other in the pseudohyperbolic metric as well as two sequences that are close to each other in the pseudohyperbolic metric. The paper concludes with a discussion of the behavior of Frostman sequences under perturbations.