We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet (Neumann) boundary datum which for large $t$ tends to the periodic function $g_0^b(t)$ ($g_1^b(t)$). Assuming that the unknown Neumann (Dirichlet) boundary value tends for large $t$ to a periodic function $g_1^b(t)$ ($g_0^b(t)$), we derive an easily verifiable condition that the functions $g_0^b(t)$ and $g_1^b(t)$ must satisfy. Furthermore, we introduce two different methods, one based on the formulation of a Riemann-Hilbert problem, and one based on a perturbative approach, for constructing $g_1^b(t)$ ($g_0^b(t)$) in terms of $g_0^b(t)$ ($g_1^b(t)$).