Do you want to publish a course? Click here

The nonlinear Schrodinger equation with $t$-periodic data: I. Exact results

281   0   0.0 ( 0 )
 Added by Jonatan Lenells
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet (Neumann) boundary datum which for large $t$ tends to the periodic function $g_0^b(t)$ ($g_1^b(t)$). Assuming that the unknown Neumann (Dirichlet) boundary value tends for large $t$ to a periodic function $g_1^b(t)$ ($g_0^b(t)$), we derive an easily verifiable condition that the functions $g_0^b(t)$ and $g_1^b(t)$ must satisfy. Furthermore, we introduce two different methods, one based on the formulation of a Riemann-Hilbert problem, and one based on a perturbative approach, for constructing $g_1^b(t)$ ($g_0^b(t)$) in terms of $g_0^b(t)$ ($g_1^b(t)$).



rate research

Read More

237 - J. Lenells , A. S. Fokas 2014
We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet boundary datum which for large $t$ tends to a periodic function. We assume that this function is sufficiently small, namely that it can be expressed in the form $alpha g_0^b(t)$, where $alpha$ is a small constant. Assuming that the Neumann boundary value tends for large $t$ to the periodic function $g_1^b(t)$, we show that $g_1^b(t)$ can be expressed in terms of a perturbation series in $alpha$ which can be constructed explicitly to any desired order. As an illustration, we compute $g_1^b(t)$ to order $alpha^8$ for the particular case that $g_0^b(t)$ is the sum of two exponentials. We also show that there exist particular functions $g_0^b(t)$ for which the above series can be summed up, and therefore for these functions $g_1^b(t)$ can be obtained in closed form. The simplest such function is $exp(iomega t)$, where $omega$ is a real constant.
246 - Jonatan Lenells 2014
We consider solutions of the defocusing nonlinear Schrodinger (NLS) equation on the half-line whose Dirichlet and Neumann boundary values become periodic for sufficiently large $t$. We prove a theorem which, modulo certain assumptions, characterizes the pairs of periodic functions which can arise as Dirichlet and Neumann values for large $t$ in this way. The theorem also provides a constructive way of determining explicit solutions with the given periodic boundary values. Hence our approach leads to a class of new exact solutions of the defocusing NLS equation on the half-line.
The unified transform method (UTM) provides a novel approach to the analysis of initial-boundary value problems for linear as well as for a particular class of nonlinear partial differential equations called integrable. If the latter equations are formulated in two dimensions (either one space and one time, or two space dimensions), the UTM expresses the solution in terms of a matrix Riemann-Hilbert (RH) problem with explicit dependence on the independent variables. For nonlinear integrable evolution equations, such as the celebrated nonlinear Schrodinger (NLS) equation, the associated jump matrices are computed in terms of the initial conditions and all boundary values. The unknown boundary values are characterized in terms of the initial datum and the given boundary conditions via the analysis of the so-called global relation. In general, this analysis involves the solution of certain nonlinear equations. In certain cases, called linearizable, it is possible to bypass this nonlinear step. In these cases, the UTM solves the given initial-boundary value problem with the same level of efficiency as the well-known inverse scattering transform solves the initial value problem on the infinite line. We show here that the initial-boundary value problem on a finite interval with $x$-periodic boundary conditions (which can alternatively be viewed as the initial value problem on a circle), belongs to the linearizable class. Indeed, by employing certain transformations of the associated RH problem and by using the global relation, the relevant jump matrices can be expressed explicitly in terms of the so-called scattering data, which are computed in terms of the initial datum. Details are given for NLS, but similar considerations are valid for other well-known integrable evolution equations, including the Korteweg-de Vries (KdV) and modified KdV equations.
238 - Yuzhao Wang 2012
In this paper we prove some multi-linear Strichartz estimates for solutions to the linear Schrodinger equations on torus $T^n$. Then we apply it to get some local well-posed results for nonlinear Schrodinger equation in critical $H^{s}(T^n)$ spaces. As by-products, the energy critical global well-posed results and energy subcritical global well-posed results with small initial data are also obtained.
131 - Yuzhao Wang 2012
We consider the cubic Hyperbolic Schrodinger equation eqref{eq:nls} on torus $T^2$. We prove that sharp $L^4$ Strichartz estimate, which implies that eqref{eq:nls} is analytic locally well-posed in in $H^s(T^2)$ with $s>1/2$, meanwhile, the ill-posedness in $H^s(T^2)$ for $s<1/2$ is also obtained. The main difficulty comes from estimating the number of representations of an integer as a difference of squares.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا