Do you want to publish a course? Click here

Weak Galactic halo--dwarf spheroidal connection from RR Lyrae stars

237   0   0.0 ( 0 )
 Added by Giuliana Fiorentino
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in six dwarf spheroidals and eleven ultra faint dwarf galaxies (1,300) show a Gaussian period distribution well peaked around a mean period of <Pab>=0.610+-0.001 days (sigma=0.03). The Halo RRL (15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dwarf spheroidals apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P< 0.48 days and Av> 0.75mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered eighteen globulars covering a broad range in metallicity (-2.3< [Fe/H]< -1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal--rich than [Fe/H] -1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of 50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.



rate research

Read More

For the first time accurate pulsation properties of the ancient variable stars of the Fornax dwarf spheroidal galaxy (dSph) are discussed in the broad context of galaxy formation and evolution. Homogeneous multi-band $BVI$ optical photometry of spanning {it twenty} years has allowed us to identify and characterize more than 1400 RR Lyrae stars (RRLs) in this galaxy. Roughly 70% are new discoveries. We investigate the period-amplitude distribution and find that Fornax shows a lack of High Amplitude (A$_Vgsim$0.75 mag) Short Period fundamental-mode RRLs (P$lsim$0.48 d, HASPs). These objects occur in stellar populations more metal-rich than [Fe/H]$sim$-1.5 and they are common in the Galactic halo (Halo) and in globulars. This evidence suggests that old (age older than 10 Gyr) Fornax stars are relatively metal-poor. A detailed statistical analysis of the role of the present-day Fornax dSph in reproducing the Halo period distribution shows that it can account for only a few to 20% of the Halo when combined with RRLs in massive dwarf galaxies (Sagittarius dSph, Large Magellanic Cloud). This finding indicates that Fornax-like systems played a minor role in building up the Halo when compared with massive dwarfs. We also discuss the occurrence of HASPs in connection with the luminosity and the early chemical composition of nearby dwarf galaxies. We find that, independently of their individual star formation histories, bright (M$_Vlsim$-13.5 mag) galaxies have HASPs, whereas faint ones (M$_Vgsim$-11 mag) do not. Interestingly enough, Fornax belongs to a luminosity range (--11$<$M$_V<$--13.5 mag) in which the occurrence of HASPs appears to be correlated with the early star formation and chemical enrichment of the host galaxy.
136 - G.-C. Liu , Y. Huang , H.-W. Zhang 2020
We present a catalog of 5,290 RR Lyrae stars (RRLs) with metallicities estimated from spectra of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) and the Sloan Extension for Galactic Understanding and Exploration (SEGUE) surveys. Nearly 70 per cent of them (3,642 objects) also have systemic radial velocities measured. Given the pulsating nature of RRLs, metallicity estimates are based on spectra of individual exposures, by matching them with the synthetic templates. The systemic radial velocities are measured by fitting the observed velocity as a function of phase assuming an empirical pulsating velocity template curve. Various tests show that our analyses yield metallicities with a typical precision of 0.20,dex and systemic radial velocities with uncertainties ranging from 5 to 21,km,s$^{-1}$ (depending on the number of radial velocity measurements available for a given star). Based on the well calibrated near-infrared $PM_{W1}Z$ or $PM_{K_{rm s}}Z$, and $M_{V}$-[Fe/H] relations, precise distances are derived for these RRLs. Finally, we include Gaia DR2 proper motions in our catalog. The catalog should be very useful for various Galactic studies, especially of the Galactic halo.
The projected density distribution of type ab RR Lyrae (RRab) stars was characterised from the innermost regions of the Milky Way to the halo, with the aim of placing constraints on the Galaxys evolution. The compiled sample (N_RRab = 64,850) stems from fundamental mode RR Lyrae variables identified by the VVV, OGLE, and Gaia surveys. The distribution is well fitted by three power laws over three radial intervals. In the innermost region (R < 2.2 deg) the distribution follows Sigma_RRab[1] propto R ^(-0.94 +- 0.051), while in the external region the distribution adheres to Sigma_RRab[2] propto R^(-1.50 +- 0.019) for 2.2 deg< R <8.0 deg and Sigma_RRab[3] propto R ^(-2.43 +- 0.043) for 8.0 deg < R <30.0 deg. Conversely, the cumulative distribution of red clump (RC) giants exhibits a more concentrated distribution in the mean, but in the central R < 2.2 deg the RRab population is more peaked, whereas globular clusters (GCs) follow a density power law (Sigma_GCs propto R ^(-1.59 +- 0.060) for R<30.0 deg) similar to that of RRab stars, especially when considering a more metal-poor subsample ([Fe/H]<-1.1 dex). The main conclusion emerging from the analysis is that the RRab distribution favours the star cluster infall and merger scenario for creating an important fraction (>18 %) of the central Galactic region. The radii containing half of the populations (half populations radii) are R_H=6.8 deg (0.99 kpc), R_H =4.2 deg (0.61 kpc), and R_H =11.9 deg (1.75 kpc) for the RRab stars, RC giants, and GCs, respectively. Finally, merely 1% of the stars have been actually discovered in the innermost region (R < 35 pc) out of the expected (based on our considerations) total number of RRab therein: N sim 1,562. That deficit will be substantially ameliorated with future space missions like the Nancy Grace Roman Space Telescope (formerly WFIRST).
Classical double-mode pulsators (RR Lyrae stars and delta Cepheids) are important for their simultaneous pulsation in low-order radial modes. This enables us to put stringent constraints on their physical parameters. We use 30 bright galactic double-mode RR~Lyrae (RRd) stars to estimate their luminosities and compare them with those derived from the parallaxes of the recent data release (EDR3) of the Gaia survey. We employ pulsation and evolutionary models, together with observationally determined effective temperatures to derive the basic stellar parameters. Excluding 6 outlying stars (e.g., with blending issues) the RRd and Gaia luminosities correlate well. With the adopted temperature zero point from one of the works based on the infrared flux method, we find it necessary to increase the Gaia parallaxes by 0.02 mas to bring the RRd and Gaia luminosities into agreement. This value is consonant with those derived from studies on binary stars in the context of Gaia. We examine also the resulting period-luminosity-metallicity (PLZ) relation in the 2MASS K band as follows from the RRd parameters. This leads to the verification of two independently derived other PLZs. No significant zero point differences are found. Furthermore, the predicted K absolute magnitudes agree within sigma=0.005-0.01mag.
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22 RR~Lyrae stars in the solar neighbourhood at a pericenter distance of between 5--9,kpc from the Galactic center. Their orbital parameters and their chemistry indicate that these 22 variables share the kinematics and the [Fe/H] values of the Galactic disc, with an average metallicity and tangential velocity of [Fe/H]=$-0.60$,dex and $v_{theta} = 241$,km,s$^{-1}$, respectively. From the distribution of the Galactocentric spherical velocity components, we find that these 22 disc-like RR~Lyrae variables are not consistent with the {it Gaia} Sausage ({it Gaia}-Enceladus), unlike almost half of the local RR~Lyrae stars. Chemical information from the literature shows that the majority of the selected pericenter peak RR~Lyrae variables are $alpha$-poor, a property shared by typically much younger stars in the thin disc. Using the available photometry we rule out a possible misclassification with the known classical and anomalous Cepheids. The similar kinematic, chemical, and pulsation properties of these disc RR~Lyrae stars suggest they share a common origin. In contrast, we find the RR~Lyrae stars associated with the {it Gaia}-Enceladus based on their kinematics and chemical composition show a considerable metallicity spread in the old population ($sim$~1,dex).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا