Do you want to publish a course? Click here

Full Bloch sphere teleportation of spinor Bose-Einstein condensates and spin ensembles

123   0   0.0 ( 0 )
 Added by Alexey Pyrkov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum teleportation is the transfer of quantum information between two locations by the use of shared entanglement. Current teleportation schemes broadly fall under one of two categories, of either qubit or continuous variables teleportation. Spin coherent states on spin ensembles can be teleported under the continuous variables approximation for states with small deviations from a given polarization. However, for spin coherent states with large deviations, no convenient teleportation protocol exists. Recently, we introduced a teleportation scheme where a spin coherent state lying on the equator of the Bloch sphere is teleported between distant parties (A.N. Pyrkov and T. Byrnes, New. J. Phys. 16, 073038 (2014)). Here we generalize the protocol to a spin coherent state with an arbitrary position on Bloch sphere. Our proposed scheme breaks classical bounds based on communication in the unconditional case and quantum state estimation with postselection.



rate research

Read More

We demonstrate detection of a weak alternate-current magnetic field by application of the spin echo technique to F = 2 Bose-Einstein condensates. A magnetic field sensitivity of 12 pT/Hz^1/2 is attained with the atom number of 5*10^3 at spatial resolution of 99 mu m^2. Our observations indicate magnetic field fluctuations synchronous with the power supply line frequency. We show that this noise is greatly suppressed by application of a reverse phase magnetic field. Our technique is useful in order to create a stable magnetic field environment, which is an important requirement for atomic experiments which require a weak bias magnetic field.
Magnetic dipole-dipole interaction dominated Bose-Einstein condensates are discussed under spinful situations. We treat the spin degrees of freedom as a classical spin vector, approaching from large spin limit to obtain an effective minimal Hamiltonian; a version extended from a non-linear sigma model. By solving the Gross-Pitaevskii equation we find several novel spin textures where the mass density and spin density are strongly coupled, depending upon trap geometries due to the long-range and anisotropic natures of the dipole-dipole interaction.
The fragmentation of spin-orbit coupled spin-1 Bose gas with a weak interaction in external harmonic trap is explored by both exact diagonalization and mean-field theory. This fragmentation tendency, which originates from the total angular momentum conservation, is affected obviously by the spin-orbit coupling strength and the spin-dependent interaction. Strong spin-orbit interaction raises the inverse participation ratio, which describes the number of significantly occupied single-particle states. As the spin-dependent interaction changes from anti-ferromagnetic to ferromagnetic, the peak values in the inverse participation ratio become lower. Without the confinement of the appointed total angular momentum, the condensate chooses a zero or finite total angular momentum ground state, which is determined by both the interaction and the spin-orbit coupling strength.
147 - Z. F. Xu , Y. Kawaguchi , L. You 2012
We develop a symmetry classification scheme to find ground states of pseudo spin-1/2, spin-1, and spin-2 spin-orbit coupled spinor Bose-Einstein condensates, and show that as the SO(2) symmetry of simultaneous spin and space rotations is broken into discrete cyclic groups, various types of lattice structures emerge in the absence of a lattice potential, examples include two different kagaome lattices for pseudo spin-1/2 condensates and a nematic vortex lattice in which uniaxial and biaxial spin textures align alternatively for spin-2 condensates. For the pseudo spin-1/2 system, although mean-field states always break time-reversal symmetry, there exists a time-reversal invariant many-body ground state, which is fragmented and expected to be observed in a micro-condensate.
We experimentally investigate and analyze the rich dynamics in F=2 spinor Bose-Einstein condensates of Rb87. An interplay between mean-field driven spin dynamics and hyperfine-changing losses in addition to interactions with the thermal component is observed. In particular we measure conversion rates in the range of 10^-12 cm^3/s for spin changing collisions within the F=2 manifold and spin-dependent loss rates in the range of 10^-13 cm^3/s for hyperfine-changing collisions. From our data we observe a polar behavior in the F=2 ground state of Rb87, while we measure the F=1 ground state to be ferromagnetic. Furthermore we see a magnetization for condensates prepared with non-zero total spin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا