Do you want to publish a course? Click here

The HARPS search for southern extra-solar planets XXXV. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543

133   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Planetary companions of a fixed mass induce larger amplitude reflex motions around lower-mass stars, which helps make M dwarfs excellent targets for extra-solar planet searches. State of the art velocimeters with $sim$1m/s stability can detect very low-mass planets out to the habitable zone of these stars. Low-mass, small, planets are abundant around M dwarfs, and most known potentially habitable planets orbit one of these cool stars. Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m telescope at La Silla observatory makes a major contribution to this sample. Methods. We present here dense radial velocity (RV) time series for three M dwarfs observed over $sim5$ years: GJ 3293 (0.42M$_odot$), GJ 3341 (0.47M$_odot$), and GJ 3543 (0.45M$_odot$). We extract those RVs through minimum $chi^2$ matching of each spectrum against a high S/N ratio stack of all observed spectra for the same star. We then vet potential orbital signals against several stellar activity indicators, to disentangle the Keplerian variations induced by planets from the spurious signals which result from rotational modulation of stellar surface inhomogeneities and from activity cycles. Results. Two Neptune-mass planets - $msin(i)=1.4pm0.1$ and $1.3pm0.1M_{nept}$ - orbit GJ 3293 with periods $P=30.60pm0.02$ d and $P=123.98pm0.38$ d, possibly together with a super-Earth - $msin(i)sim7.9pm1.4M_oplus$ - with period $P=48.14pm0.12;d$. A super-Earth - $msin(i)sim6.1M_oplus$ - orbits GJ 3341 with $P=14.207pm0.007;d$. The RV variations of GJ 3543, on the other hand, reflect its stellar activity rather than planetary signals.



rate research

Read More

Context. Low mass stars are currently the best targets for searches for rocky planets in the habitable zone of their host star. Over the last 13 years, precise radial velocities measured with the HARPS spectrograph have identified over a dozen super-Earths and Earth-mass planets (msin i<10Mearth ) around M dwarfs, with a well understood selection function. This well defined sample informs on their frequency of occurrence and on the distribution of their orbital parameters, and therefore already constrains our understanding of planetary formation. The subset of these low-mass planets that were found within the habitable zone of their host star also provide prized targets for future atmospheric biomarkers searches. Aims. We are working to extend this planetary sample to lower masses and longer periods through dense and long-term monitoring of the radial velocity of a small M dwarf sample. Methods. We obtained large numbers of HARPS spectra for the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628 and GJ 3293, from which we derived radial velocities (RVs) and spectroscopic activity indicators. We searched them for variabilities, periodicities, Keplerian modulations and correlations, and attribute the radial-velocity variations to combinations of planetary companions and stellar activity. Results. We detect 12 planets, of which 9 are new with masses ranging from 1.17 to 10.5 Mearth . Those planets have relatively short orbital periods (P<40 d), except two of them with periods of 217.6 and 257.8 days. Among these systems, GJ 273 harbor two planets with masses close to the one of the Earth. With a distance of 3.8 parsec only, GJ 273 is the second nearest known planetary system - after Proxima Centauri - with a planet orbiting the circumstellar habitable zone.
Context: How planet properties depend on stellar mass is a key diagnostic of planetary formation mechanisms. Aims: This motivates planet searches around stars which are significantly more massive or less massive than the Sun, and in particular our radial velocity search for planets around very-low mass stars. Methods: As part of that program, we obtained measurements of GJ 674, an M2.5 dwarf at d=4.5 pc, which have a dispersion much in excess of their internal errors. An intensive observing campaign demonstrates that the excess dispersion is due to two superimposed coherent signals, with periods of 4.69 and 35 days. Results: These data are well described by a 2-planet Keplerian model where each planet has a ~11 Mearth minimum mass. A careful analysis of the (low level) magnetic activity of GJ 674 however demonstrates that the 35-day period coincides with the stellar rotation period. This signal therefore originates in a spot inhomogeneity modulated by stellar rotation. The 4.69-day signal on the other hand is caused by a bona-fide planet, GJ 674b. Conclusion: Its detection adds to the growing number of Neptune-mass planets around M-dwarfs, and reinforces the emerging conclusion that this mass domain is much more populated than the jovian mass range. We discuss the metallicity distributions of M dwarf with and without planets and find a low 11% probability that they are drawn from the same parent distribution. Moreover, we find tentative evidence that the host star metallicity correlates with the total mass of their planetary system.
165 - X. Bonfils , X. Delfosse , S. Udry 2011
(Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed time on the ESO/HARPS spectrograph (Feb. 11th, 2003 to Apr. 1st 2009). This paper makes available the samples time series, presents their precision and variability. We apply systematic searches and diagnostics to discriminate whether the observed Doppler shifts are caused by stellar surface inhomogeneities or by the radial pull of orbiting planets. We recover the planetary signals corresponding to 9 planets already announced by our group (Gl176b, Gl581b, c, d & e, Gl674b, Gl433b, Gl 667Cb and c). We present radial velocities that confirm GJ 849 hosts a Jupiter-mass planet, plus a long-term radial-velocity variation. We also present RVs that precise the planetary mass and period of Gl 832b. We detect long-term RV changes for Gl 367, Gl 680 and Gl 880 betraying yet unknown long-period companions. We identify candidate signals in the radial-velocity time series and demonstrate they are most probably caused by stellar surface inhomogeneities. Finally, we derive a first estimate of the occurrence of M-dwarf planets as a function of their minimum mass and orbital period. In particular, we find that giant planets (m sin i = 100-1,000 Mearth) have a low frequency (e.g. f<1% for P=1-10 d and f=0.02^{+0.03}_{-0.01} for P=10-100 d), whereas super-Earths (m sin i = 1-10 Mearth) are likely very abundant (f=0.36^{+0.25}_{-0.10} for P=1-10 d and f=0.35^{+0.45}_{-0.11} for P=10-100 d). We also obtained eta_earth=0.41^{+0.54}_{-0.13}, the frequency of habitable planets orbiting M dwarfs (1<m sin i<10 Mearth). For the first time, eta_earth is a direct measure and not a number extrapolated from the statistic of more massive and/or shorter-period planets.
138 - Thierry Forveille 2010
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H]=-0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H]=-0.17), and Gl 676A ([Fe/H=0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5~Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses.
We present the discovery of four new long-period planets within the HARPS high-precision sample: object{HD137388}b ($Msin{i}$ = 0.22 $M_J$), object{HD204941}b ($Msin{i}$ = 0.27 $M_J$), object{HD7199}b ($Msin{i}$ = 0.29 $M_J$), object{HD7449}b ($Msin{i}$ = 1.04 $M_J$). A long-period companion, probably a second planet, is also found orbiting HD7449. Planets around HD137388, HD204941, and HD7199 have rather low eccentricities (less than 0.4) relative to the 0.82 eccentricity of HD7449b. {All these planets were discovered even though their hosting stars have clear signs of activity. Solar-like magnetic cycles, characterized by long-term activity variations, can be seen for HD137388, HD204941 and HD7199, whereas the measurements of HD7449 reveal a short-term activity variation, most probably induced by magnetic features on the stellar surface. We confirm that magnetic cycles induce a long-term radial velocity variation and propose a method to reduce considerably the associated noise.} The procedure consists of fitting the activity index and applying the same solution to the radial velocities because a linear correlation between the activity index and the radial velocity is found. Tested on HD137388, HD204941, and HD7199, this correction reduces considerably the stellar noise induced by magnetic cycles and allows us to derive precisely the orbital parameters of planetary companions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا