Do you want to publish a course? Click here

Constraining Hybrid Natural Inflation with recent CMB data

127   0   0.0 ( 0 )
 Added by Carlos Hidalgo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the Hybrid Natural Inflation (HNI) model and some of its realisations in the light of recent CMB observations, mainly Planck temperature and WMAP-9 polarization, and compare with the recent release of BICEP2 dataset. The inflationary sector of HNI is essentially given by the potential $V(phi) = V_0(1+acos (frac{phi}{f} ) )$, where $a$ is a positive constant smaller or equal to one and $f$ is the scale of (pseudo Nambu-Goldstone) symmetry breaking. We show that to describe the HNI model realisations we only need two observables; the spectral index $n_s$, the tensor-to-scalar ratio, and a free parameter in the amplitude of the cosine function $a$. We find that in order to make the HNI model compatible with the BICEP2 observations, we require a large positive running of the spectra. We find that this could over-produce primordial black holes in the most consistent case of the model. This situation could be aleviated if, as recently argued, the BICEP2 data do not correspond to primordial gravitational waves.



rate research

Read More

We consider natural inflation in a warm inflation framework with a temperature-dependent dissipative coefficient $Gamma propto T^3$. Natural inflation can be compatible with the Planck 2018 results with such warm assistance. With no a priori assumptions on the dissipative effects magnitude, we find that the Planck results prefer a weak dissipative regime for our benchmark scale $f=5 M_{rm pl}$, which lies outside the $2sigma$ region in the cold case. The inflation starts in the cold regime and evolves with a growing thermal fluctuation that dominates over quantum fluctuation before the end of the inflation. The observed spectral tilt puts stringent constraints on the models parameter space. We find that $f< 1 M_{rm pl}$ is excluded. A possible origin of such dissipative coefficient from axion-like coupling to gauge fields and tests of the model are also discussed.
We study gravitational wave production from gauge preheating in a variety of inflationary models, detailing its dependence on both the energy scale and the shape of the potential. We show that preheating into Abelian gauge fields generically leads to a large gravitational wave background that contributes significantly to the effective number of relativistic degrees of freedom in the early universe, $N_mathrm{eff}$. We demonstrate that the efficiency of gravitational wave production is correlated with the tensor-to-scalar ratio, $r$. In particular, we show that efficient gauge preheating in models whose tensor-to-scalar ratio would be detected by next-generation cosmic microwave background experiments ($r gtrsim 10^{-3}$) will be either detected through its contribution to $N_mathrm{eff}$ or ruled out. Furthermore, we show that bounds on $N_mathrm{eff}$ provide the most sensitive probe of the possible axial coupling of the inflaton to gauge fields regardless of the potential.
The angular power spectrum of the cosmic microwave background temperature anisotropy observed by WMAP has an anomalous dip at l~20 and bump at l~40. One explanation for this structure is the presence of features in the primordial curvature power spectrum, possibly caused by a step in the inflationary potential. The detection of these features is only marginally significant from temperature data alone. However, the inflationary feature hypothesis predicts a specific shape for the E-mode polarization power spectrum with a structure similar to that observed in temperature at l~20-40. Measurement of the CMB polarization on few-degree scales can therefore be used as a consistency check of the hypothesis. The Planck satellite has the statistical sensitivity to confirm or rule out the model that best fits the temperature features with 3 sigma significance, assuming all other parameters are known. With a cosmic variance limited experiment, this significance improves to 8 sigma. For tests of inflationary models that can explain both the dip and bump in temperature, the primary source of uncertainty is confusion with polarization features created by a complex reionization history, which at most reduces the significance to 2.5 sigma for Planck and 5-6 sigma for an ideal experiment. Smoothing of the polarization spectrum by a large tensor component only slightly reduces the ability of polarization to test for inflationary features, as does requiring that polarization is consistent with the observed temperature spectrum given the expected low level of TE correlation on few-degree scales. A future polarization satellite would enable a decisive test of the feature hypothesis and provide complementary information about the shape of a possible step in the inflationary potential. (Abridged.)
The simplest two-field completion of natural inflation has a regime in which both fields are active and in which its predictions are within the Planck 1-$sigma$ confidence contour. We show this for the original model of natural inflation, in which inflation is achieved through the explicit breaking of a U(1) symmetry. We consider the case in which the mass coming from explicit breaking of this symmetry is comparable to that from spontaneous breaking, which we show is consistent with a hierarchy between the corresponding energy scales. While both masses are comparable when the observable modes left the horizon, the mass hierarchy is restored in the last e-foldings of inflation, rendering the predictions consistent with the isocurvature bounds. For completeness, we also study the predictions for the case in which there is a large hierarchy of masses and an initial period of inflation driven by the (heavy) radial field.
We demonstrate that gravitational waves generated by efficient gauge preheating after axion inflation generically contribute significantly to the effective number of relativistic degrees of freedom $N_mathrm{eff}$. We show that, with existing Planck limits, gravitational waves from preheating already place the strongest constraints on the inflatons possible axial coupling to Abelian gauge fields. We demonstrate that gauge preheating can completely reheat the Universe regardless of the inflationary potential. Further, we quantify the variation of the efficiency of gravitational wave production from model to model and show that it is correlated with the tensor-to-scalar ratio. In particular, when combined with constraints on models whose tensor-to-scalar ratios would be detected by next-generation cosmic microwave background experiments, $rgtrsim 10^{-3}$, constraints from $N_mathrm{eff}$ will probe or rule out the entire coupling regime for which gauge preheating is efficient.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا