No Arabic abstract
We experimentally and theoretically study the peak fraction of a Bose-Einstein condensate loaded into a cubic optical lattice as the lattice potential depth and entropy per particle are varied. This system is well-described by the superfluid regime of the Bose-Hubbard model, which allows for comparison with mean-field theories and exact quantum Monte Carlo (QMC) simulations. Despite correcting for systematic discrepancies between condensate fraction and peak fraction, we discover that the experiment consistently shows the presence of a condensate at temperatures higher than the critical temperature predicted by QMC simulations. This metastability suggests that turning on the lattice potential is non-adiabatic. To confirm this behavior, we compute the timescales for relaxation in this system, and find that equilibration times are comparable with the known heating rates. The similarity of these timescales implies that turning on the lattice potential adiabatically may be impossible. Our results point to the urgent need for a better theoretical and experimental understanding of the timescales for relaxation and adiabaticity in strongly interacting quantum gases, and the importance of model-independent probes of thermometry in optical lattices.
The recent experimental condensation of ultracold atoms in a triangular optical lattice with negative effective tunneling energies paves the way to study frustrated systems in a controlled environment. Here, we explore the critical behavior of the chiral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and inter-component interactions, referred to as $V_{0}$ and $V_{12}$, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For $V_{12}/V_{0} = 2$, which corresponds to the bare interaction, this approach suggests a first order phase transition, at which both the U$(1)$ symmetry of condensation and the $mathbb{Z}_2$ symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization group calculation at one-loop order. We demonstrate that the coupling regime $0<V_{12}/V_0leq1$ shares the critical behavior of the Heisenberg fixed point at $V_{12}/V_{0}=1$. For $V_{12}/V_0>1$ we show that $V_{0}$ flows to a negative value, while $V_{12}$ increases and remains positive. This results in a breakdown of the effective quartic field theory due to a cubic anisotropy, and again suggests a discontinuous phase transition.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realization of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 $mu$m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity.
We observe multi-step condensation of sodium atoms with spin $F=1$, where the different Zeeman components $m_F=0,pm 1$ condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization $m_z$ and on the quadratic Zeeman energy $q$ (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin 1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading for instance to condensation in $m_F=pm 1$, a phenomenon that cannot occur for an ideal gas with $q>0$.
The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.