Do you want to publish a course? Click here

Chiral zero modes in superconducting nanowires with Dresselhaus spin-orbit coupling

160   0   0.0 ( 0 )
 Added by Hsien-Chung Kao
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using chiral decomposition, we are able to find analytically the zero modes and the conditions for such modes to exist in the Kitaev ladder model and superconducting nanowires with Dresselhaus spin-orbit coupling. As a result, we are able to calculate the number of zero modes in these systems for arbitrary given parameters in the semi-infinite limit. Moreover, we find that when suitable resonance condition is satisfied exact zero modes exist even in finite systems contrary to the common belief.



rate research

Read More

Skyrmions are topological spin textures of interest for fundamental science and applications. Previous theoretical studies have focused on systems with broken bulk inversion symmetry, where skyrmions are stabilized by easy-axis anisotropy. We investigate here systems that break surface inversion symmetry, in addition to possible broken bulk inversion. This leads to two distinct Dzyaloshinskii-Moriya (DM) terms with strengths $D_perp$, arising from Rashba spin-orbit coupling (SOC), and $D_parallel$ from Dresselhaus SOC. We show that skyrmions become progressively more stable with increasing $D_perp/D_parallel$, extending into the regime of easy-plane anisotropy. We find that the spin texture and topological charge density of skyrmions develops nontrivial spatial structure, with quantized topological charge in a unit cell given by a Chern number. Our results give a design principle for tuning Rashba SOC and magnetic anisotropy to stabilize skyrmions in thin films, surfaces, interfaces and bulk magnetic materials that break mirror symmetry.
Tunneling experiment is a key technique for detecting Majorana fermion in solid state systems. We use Keldysh non-equilibrium Green function method to study multi-lead tunneling in superconducting nanowire with Rashba and Dresselhaus spin-orbit couplings. A zero-bias textit{dc} conductance peak appears in our setup which signifies the existence of Majorana fermion and is in accordance with previous experimental results on InSb nanowire. Interestingly, due to the exotic property of Majorana fermion, there exists a hole transmission channel which makes the currents asymmetric at the left and right leads. The textit{ac} current response mediated by Majorana fermion is also studied here. To discuss the impacts of Coulomb interaction and disorder on the transport property of Majorana nanowire, we use the renormalization group method to study the phase diagram of the wire. It is found that there is a topological phase transition under the interplay of superconductivity and disorder. We find that the Majorana transport is preserved in the superconducting-dominated topological phase and destroyed in the disorder-dominated non-topological insulator phase.
The spin-orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here, we study an additional effect on the SOC: the asymmetry induced by the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behavior is counterintuitive compared to bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin-orbitronic concepts in semiconductor-based structures.
We investigated the magnetotransport of InAs nanowires grown by selective area metal-organic vapor phase epitaxy. In the temperature range between 0.5 and 30 K reproducible fluctuations in the conductance upon variation of the magnetic field or the back-gate voltage are observed, which are attributed to electron interference effects in small disordered conductors. From the correlation field of the magnetoconductance fluctuations the phase-coherence length l_phi is determined. At the lowest temperatures l_phi is found to be at least 300 nm, while for temperatures exceeding 2 K a monotonous decrease of l_phi with temperature is observed. A direct observation of the weak antilocalization effect indicating the presence of spin-orbit coupling is masked by the strong magnetoconductance fluctuations. However, by averaging the magnetoconductance over a range of gate voltages a clear peak in the magnetoconductance due to the weak antilocalization effect was resolved. By comparison of the experimental data to simulations based on a recursive two-dimensional Greens function approach a spin-orbit scattering length of approximately 70 nm was extracted, indicating the presence of strong spin-orbit coupling.
A superconductor-semiconducting nanowire-superconductor heterostructure in the presence of spin orbit coupling and magnetic field can support a supercurrent even in the absence of phase difference between the superconducting electrodes. We investigate this phenomenon, the anomalous Josephson effect, employing a model capable of describing many bands in the normal region. We discuss geometrical and symmetry conditions required to have finite anomalous supercurrent and in particular we show that this phenomenon is enhanced when the Fermi level is located close to a band opening in the normal region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا