Do you want to publish a course? Click here

An improved source-subtracted and destriped 408 MHz all-sky map

241   0   0.0 ( 0 )
 Added by Mathieu Remazeilles
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The all-sky 408 MHz map of Haslam et al. is one the most important total-power radio surveys. It has been widely used to study diffuse synchrotron radiation from our Galaxy and as a template to remove foregrounds in cosmic microwave background data. However, there are a number of issues associated with it that must be dealt with, including large-scale striations and contamination from extragalactic radio sources. We have re-evaluated and re-processed the rawest data available to produce a new and improved 408 MHz all-sky map. We first quantify the positional accuracy ($approx 7$ arcmin) and effective beam ($56.0pm1.0$ arcmin) of the four individual surveys from which it was assembled. Large-scale striations associated with $1/f$ noise in the scan direction are reduced to a level $ll 1$ K using a Fourier-based filtering technique. The most important improvement results from the removal of extragalactic sources. We have used an iterative combination of two techniques -- two-dimensional Gaussian fitting and minimum curvature spline surface inpainting -- to remove the brightest sources ($gtrsim 2$ Jy), which provides a significant improvement over previo

rate research

Read More

We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with simulations for two very different low frequency interferometers, the Murchison Widefield Array (MWA) and the MIT Epoch of Reionization (MITEoR) Experiment. We then apply the method to the MITEoR data set collected in July 2013 to obtain the first northern sky map from 128 MHz to 175 MHz at about 2 degree resolution, and find an overall spectral index of -2.73+/-0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as HERA. Both the MITEoR interferometric data and the 150 MHz sky map are publicly available at http://space.mit.edu/home/tegmark/omniscope.html.
The radio spectral index is a powerful probe for classifying cosmic radio sources and understanding the origin of the radio emission. Combining data at 147 MHz and 1.4 GHz from the TIFR GMRT Sky Survey (TGSS) and the NRAO VLA Sky Survey (NVSS), we produced a large-area radio spectral index map of ~80 per cent of the sky (Dec > -40 deg), as well as a radio spectral index catalogue containing 1,396,515 sources, of which 503,647 are not upper or lower limits. Almost every TGSS source has a detected counterpart, while this is true only for 36 per cent of NVSS sources. We released both the map and the catalogue to the astronomical community. The catalogue is analysed to discover systematic behaviours in the cosmic radio population. We find a differential spectral behaviour between faint and bright sources as well as between compact and extended sources. These trends are explained in terms of radio galaxy evolution. We also confirm earlier reports of an excess of steep-spectrum sources along the galactic plane. This corresponds to 86 compact and steep-spectrum source in excess compared to expectations. The properties of this excess are consistent with normal non-recycled pulsars, which may have been missed by pulsation searches due to larger than average scattering along the line of sight.
129 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy institutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
110 - C.J. Fluke 2018
Spherical coordinate systems, which are ubiquitous in astronomy, cannot be shown without distortion on flat, two-dimensional surfaces. This poses challenges for the two complementary phases of visual exploration -- making discoveries in data by looking for relationships, patterns or anomalies -- and publication -- where the results of an exploration are made available for scientific scrutiny or communication. This is a long-standing problem, and many practical solutions have been developed. Our allskyVR approach provides a workflow for experimentation with commodity virtual reality head-mounted displays. Using the free, open source S2PLOT programming library, and the A-Frame WebVR browser-based framework, we provide a straightforward way to visualise all-sky catalogues on a user-centred, virtual celestial sphere. The allskyVR distribution contains both a quickstart option, complete with a gaze-based menu system, and a fully customisable mode for those who need more control of the immersive experience. The software is available for download from: https://github.com/cfluke/allskyVR
We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources to date. In the map making procedure we use a recently developed algorithm that reconstructs the map and the power spectrum of a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able to identify some rotation angles that are offset by an integer multiple of pi. The resulting map can be seen as an improved version of earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power law behavior with a power law index of -2.14 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) proportional to k^-2.14 of the underlying field n_e times B_r under simplifying geometrical and statistical assumptions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا