We report the first-principles study of superconducting critical temperature and superconducting properties of Fe-based superconductors taking into account on the same footing phonon, charge and spin-fluctuation mediated Cooper pairing. We show that in FeSe this leads to a modulated s$pm$ gap symmetry, and that the antiferromagnetic paramagnons are the leading mechanism for superconductivity in FeSe, overcoming the strong repulsive effect of both phonons and charge pairing.