Do you want to publish a course? Click here

Hybrid C-O-Ne White Dwarfs as Progenitors of Diverse SNe Ia

324   0   0.0 ( 0 )
 Added by Pavel Denissenkov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

When carbon is ignited off-center in a CO core of a super-AGB star, its burning in a convective shell tends to propagate to the center. Whether the C flame will actually be able to reach the center depends on the efficiency of extra mixing beneath the C convective shell. Whereas thermohaline mixing is too inefficient to interfere with the C-flame propagation, convective boundary mixing can prevent the C burning from reaching the center. As a result, a C-O-Ne white dwarf (WD) is formed, after the star has lost its envelope. Such a hybrid WD has a small CO core surrounded by a thick ONe zone. In our 1D stellar evolution computations the hybrid WD is allowed to accrete C-rich material, as if it were in a close binary system and accreted H-rich material from its companion with a sufficiently high rate at which the accreted H would be processed into He under stationary conditions, assuming that He could then be transformed into C. When the mass of the accreting WD approaches the Chandrasekhar limit, we find a series of convective Urca shell flashes associated with high abundances of 23Na and 25Mg. They are followed by off-center C ignition leading to convection that occupies almost the entire star. To model the Urca processes, we use the most recent well-resolved data for their reaction and neutrino-energy loss rates. Because of the emphasized uncertainty of the convective Urca process in our hybrid WD models of SN Ia progenitors, we consider a number of their potentially possible alternative instances for different mixing assumptions, all of which reach a phase of explosive C ignition, either off or in the center. Our hybrid SN Ia progenitor models have much lower C to O abundance ratios at the moment of the explosive C ignition than their pure CO counterparts, which may explain the observed diversity of the SNe Ia.



rate research

Read More

The Galactic population of close white dwarf binaries is expected to provide the largest number of gravitational wave sources for low frequency detectors such as the Laser Interferometer Space Antenna (LISA). Current data analysis techniques have demonstrated the capability of resolving on the order of $10^4$ white dwarf binaries from a 2 year observation. Resolved binaries are either at high frequencies or large amplitudes. Such systems are more likely to be high-mass binaries, a subset of which will be progenitors of SNe Ia in the double degenerate scenario. We report on results of a study of the properties of resolved binaries using a population synthesis model of the Galactic white dwarf binaries and a LISA data analysis algorithm using Mock LISA Data Challenge tools.
Type Ia supernovae are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally produce the correct mix of elements, but have to be finely tuned to proceed from sub-sonic deflagration to super-sonic detonation. Second, population models and observations give formation rates of near-Chandrasekhar white dwarfs that are far too small. Here, we suggest that type Ia supernovae instead result from mergers of roughly equal-mass carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. Numerical studies of such mergers have shown that the remnants consist of rapidly rotating cores that contain most of the mass and are hottest in the center, surrounded by dense, small disks. We argue that the disks accrete quickly, and that the resulting compressional heating likely leads to central carbon ignition. This ignition occurs at densities for which pure detonations lead to events similar to type Ia supernovae. With this merger scenario, we can understand the type Ia rates, and have plausible reasons for the observed range in luminosity and for the bias of more luminous supernovae towards younger populations. We speculate that explosions of white dwarfs slowly brought to the Chandrasekhar limit---which should also occur---are responsible for some of the atypical type Ia supernovae.
Cataclysmic Variables (CVs) and Symbiotic Binaries are close (or not so close) binary star systems which contain both a white dwarf (WD) primary and a larger cooler secondary star that typically fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and a fraction of this material is accreted by the WD. Here we report on our hydrodynamic studies of the thermonuclear runaway (TNR) in the accreted material that ends in a Classical Nova explosion. We have followed the evolution of the TNRs on both carbon-oxygen (CO) and oxygen-neon (ONe) WDs. We report on 3 studies in this paper. First, simulations in which we accrete only solar matter using NOVA (our 1-D, fully implicit, hydro code). Second, we use MESA for similar studies in which we accrete only Solar matter and compare the results. Third, we accrete solar matter until the TNR is ongoing and then switch the composition in the accreted layers to a mixed composition: either 25% WD and 75% solar or 50% WD and 50% Solar matter. We find that the amount of accreted material is inversely proportional to the initial 12C abundance (as expected). Thus, accreting solar matter results in a larger amount of accreted material to fuel the outburst; much larger than in earlier studies where a mixed composition was assumed from the beginning of the simulation. Our most important result is that all these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit.
The lower limit for the mass of white dwarfs (WDs) with C-O core is commonly assumed to be roughly 0.5 Msun. As a consequence, WDs of lower masses are usually identified as He-core remnants. However, when the initial mass of the progenitor star is in between 1.8 and 3 Msun, which corresponds to the so called red giant (RGB) phase transition, the mass of the H-exhausted core at the tip of the RGB is 0.3 < M_H/Msun < 0.5. Prompted by this well known result of stellar evolution theory, we investigate the possibility to form C-O WDs with mass M < 0.5 Msun. The pre-WD evolution of stars with initial mass of about 2.3 Msun, undergoing anomalous mass-loss episodes during the RGB phase and leading to the formation of WDs with He-rich or CO-rich cores have been computed. The cooling sequences of the resulting WDs are also described. We show that the minimum mass for a C-O WD is about 0.33 Msun, so that both He and C-O core WDs can exist in the mass range 0.33-0.5 Msun. The models computed for the present paper provide the theoretical tools to indentify the observational counterpart of very low mass remnants with a C-O core among those commonly ascribed to the He-core WD population in the progressively growing sample of observed WDs of low mass. Moreover, we show that the central He-burning phase of the stripped progeny of the 2.3 Msun star lasts longer and longer as the total mass decreases. In particular, the M= 0.33 Msun model takes about 800 Myr to exhausts its central helium, which is more than three time longer than the value of the standard 2.3 Msun star: it is, by far, the longest core-He burning lifetime. Finally, we find the occurrence of gravonuclear instabilities during the He-burning shell phase.
Because of the large neutron excess of $^{22}$Ne, this isotope rapidly sediments in the interior of the white dwarfs. This process releases an additional amount of energy, thus delaying the cooling times of the white dwarf. This influences the ages of different stellar populations derived using white dwarf cosmochronology. Furthermore, the overabundance of $^{22}$Ne in the inner regions of the star, modifies the Brunt-Vaisala frequency, thus altering the pulsational properties of these stars. In this work, we discuss the impact of $^{22}$Ne sedimentation in white dwarfs resulting from Solar metallicity progenitors ($Z=0.02$). We performed evolutionary calculations of white dwarfs of masses $0.528$, $0.576$, $0.657$ and $0.833$ M$_{sun}$, derived from full evolutionary computations of their progenitor stars, starting at the Zero Age Main Sequence all the way through central hydrogen and helium burning, thermally-pulsing AGB and post-AGB phases. Our computations show that at low luminosities ($log(L/L_{sun})la -4.25$), $^{22}$Ne sedimentation delays the cooling of white dwarfs with Solar metallicity progenitors by about 1~Gyr. Additionally, we studied the consequences of $^{22}$Ne sedimentation on the pulsational properties of ZZ~Ceti white dwarfs. We find that $^{22}$Ne sedimentation induces differences in the periods of these stars larger than the present observational uncertainties, particularly in more massive white dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا