No Arabic abstract
The paramagnetic-to-ferromagnetic phase transition is believed to proceed through a critical point, at which power laws and scaling invariance, associated with the existence of one diverging characteristic length scale -- the so called correlation length -- appear. We indeed observe power laws and scaling behavior over extraordinarily many decades of the suitable scaling variables at the paramagnetic-to-ferromagnetic phase transition in ultrathin Fe films. However, we find that, when the putative critical point is approached, the singular behavior of thermodynamic quantities transforms into an analytic one: the critical point does not exist, it is replaced by a more complex phase involving domains of opposite magnetization, below as well as $above$ the putative critical temperature. All essential experimental results are reproduced by Monte-Carlo simulations in which, alongside the familiar exchange coupling, the competing dipole-dipole interaction is taken into account. Our results imply that a scaling behavior of macroscopic thermodynamic quantities is not necessarily a signature for an underlying second-order phase transition and that the paramagnetic-to-ferromagnetic phase transition proceeds, very likely, in the presence of at least two long spatial scales: the correlation length and the size of magnetic domains.
We present mathematical details of derivation of the critical exponents for the free energy and magnetization in the vicinity of the Gaussian fixed point of renormalization. We treat the problem in general terms and do not refer to particular models of interaction energy. We discuss the case of arbitrary dispersion of the fixed point.
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension corresponding to the value $ u = 0.455 pm 0.002$ of the correlation-length exponent. This value agrees with previous (less precise) results from conventional methods, e.g., finite-size scaling of the near-critical order parameters. We also study the $Q$-derivatives of the Binder cumulants of the order parameters for $L^2$ lattices with $L$ up to $448$. The slope grows as $L^{1/ u}$ with a value of $ u$ consistent with the scaling dimension of the $Q$ term. There are no indications of runaway flow to a first-order phase transition. The mutually consistent estimates of $ u$ provide compelling support for a continuous deconfined quantum-critical point.
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distribution is exploited to establish the former, and corroborate its predicted scaling form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when one accounts for the effects of the negative background constant contribution to the canonical critical specific heat. We show that this same constant plays a significant role in determining the observed differences between the canonical and microcanonical specific heats of systems of finite size, in the critical region.
We have studied a quantum Hamiltonian that models an array of ultrasmall Josephson junctions with short range Josephson couplings, $E_J$, and charging energies, $E_C$, due to the small capacitance of the junctions. We derive a new effective quantum spherical model for the array Hamiltonian. As an application we start by approximating the capacitance matrix by its self-capacitive limit and in the presence of an external uniform background of charges, $q_x$. In this limit we obtain the zero-temperature superconductor-insulator phase diagram, $E_J^{rm crit}(E_C,q_x)$, that improves upon previous theoretical results that used a mean field theory approximation. Next we obtain a closed-form expression for the conductivity of a square array, and derive a universal scaling relation valid about the zero--temperature quantum critical point. In the latter regime the energy scale is determined by temperature and we establish universal scaling forms for the frequency dependence of the conductivity.
We give an overview of numerical and experimental estimates of critical exponents in Spin Glasses. We find that the evidence for a breakdown of universality of exponents in these systems is very strong.