Do you want to publish a course? Click here

Microscopic positive-energy potential based on Gogny interaction

98   0   0.0 ( 0 )
 Added by Guillaume Blanchon
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We present nucleon elastic scattering calculation based on Greens function formalism in the Random-Phase Approximation. For the first time, the Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, non-local and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross section. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schrodinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from $^{40}$Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to much too high volume integral of the real potential for large partial waves. Moreover, this works opens the way for future effective interactions suitable simultaneously for both nuclear structure and reaction.



rate research

Read More

We present our current studies and our future plans on microscopic potential based on effective nucleon-nucleon interaction and many-body theory. This framework treats in an unified way nuclear structure and reaction. It offers the opportunity to link the underlying effective interaction to nucleon scattering observables. The more consistently connected to a variety of reaction and structure experimental data the framework will be, the more constrained effective interaction will be. As a proof of concept, we present some recent results for both neutron and proton scattered from spherical target nucleus, namely 40 Ca, using the Gogny D1S interaction. Possible fruitful crosstalks between microscopic potential, phenomenological potential and effective interaction are exposed. We then draw some prospective plans for the forthcoming years including scattering from spherical nuclei experiencing pairing correlations, scattering from axially deformed nuclei, and new effective interaction with reaction constraints.
An analysis of neutron and proton scattering off $^{40,48}$Ca has been carried out. Real and imaginary potentials have been generated using the Nuclear Structure Method (NSM) for scattering with the Gogny D1S nucleon-nucleon effective interaction. Observables are well described by NSM for neutron and proton elastic scattering off $^{40}$Ca and for neutron scattering off $^{48}$Ca. For proton scattering off $^{48}$Ca, NSM yields a lack of absorption. This discrepancy is attributed to double-charge-exchange contribution and coupling to Gamow- Teller mode which are not included in the present version of NSM. A recipe based on a Perey-Buck fit of NSM imaginary potential and Lane model is proposed to overcome this issue in an approximate way.
60 - Lu Guo , K. Godbey , A. S. Umar 2018
Background: The tensor interaction is known to play an important role in the nuclear structure studies of exotic nuclei. However, most microscopic studies of low-energy nuclear reactions neglect the tensor force, resulting in a lack of knowledge concerning the effect of the tensor force on HIC...... Purpose: The theoretical study of the influence of the tensor force on heavy-ion interaction potentials is required to further our understanding of the microscopic mechanisms entailed in fusion dynamics. Method: The full Skyrme tensor force is implemented into the static Hartree-Fock and dynamic density-constrained time-dependent Hartree-Fock (DC-TDHF) theory to calculate both static (frozen density) and dynamic microscopic interaction potentials for reactions involving exotic and stable nuclei. Results: The static potentials are found to be systematically higher than the dynamical results, which are attributed to the microscopic dynamical effects included in TDHF. We also show that the dynamical potential barriers vary more significantly by the inclusion of tensor force than the static barriers. The influence of isoscalar and isovector tensor terms is also investigated with the TIJ set of forces. For light systems, the tensor force is found to have an imperceptible effect on the nucleus-nucleus potential. However, for medium and heavy spin-unsaturated reactions, the potentials may change from a fraction of an MeV to almost 2 MeV by the inclusion of tensor force, indicating a strong impact of the tensor force on sub-barrier fusion. Conclusions: The tensor force could indeed play a large role in the fusion of nuclei, with spin-unsaturated systems seeing a systematic increase in ion-ion barrier height and width. This fusion hindrance is partly due to static, ground state effects from the inclusion of the tensor force, though additional hindrance appears when studying nuclear dynamics.
We report on the results of the calculations of the low energy excitation patterns for three Zirconium isotopes, viz. $^{80}$Zr$_{40}$, $^{96}$Zr$_{56}$ and $^{110}$Zr$_{70}$, reported by other authors to be doubly-magic tetrahedral nuclei (with tetrahedral magic numbers $Z$=40 and $N$=40, 56 and 70). We employ the realistic Gogny effective interactions using three variants of their parametrisation and the particle-number, parity and the angular-momentum projection techniques. We confirm quantitatively that the resulting spectra directly follow the pattern expected from the group theory considerations for the tetrahedral symmetric quantum objects. We also find out that, for all the nuclei studied, the correlation energy obtained after the angular momentum projection is very large for the tetrahedral deformation as well as other octupole deformations. The lowering of the energies of the resulting configurations is considerable, i.e. by about 10 MeV or even more, once again confirming the significance of the angular-momentum projections techniques in the mean-field nuclear structure calculations.
We report on shell-model calculations employing effective interactions derived from a new realistic nucleon-nucleon (NN) potential based on chiral effective field theory. We present results for 18O, 134Te, and 210Po. Our results are in excellent agreement with experiment indicating a remarkable predictive power of the chiral NN potential for low-energy microscopic nuclear structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا