Do you want to publish a course? Click here

The Solar Energetic Particle Event on 2013 April 11: An Investigation of its Solar Origin and Longitudinal Spread

124   0   0.0 ( 0 )
 Added by David Lario
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2013 April 11 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. We use Extreme UltraViolet (EUV) and white-light coronagraph observations from the Solar Dynamics Observatory (SDO), the SOlar and Heliospheric Observatory (SOHO) and the twin Solar TErrestrial RElations Observatory spacecraft (STEREO-A and STEREO-B) to determine the angular extent of the EUV wave and coronal mass ejection (CME) associated with the origin of the SEP event. We compare the estimated release time of SEPs observed at each spacecraft with the arrival time of the structures associated with the CME at the footpoints of the field lines connecting each spacecraft with the Sun. Whereas the arrival of the EUV wave and CME-driven shock at the footpoint of STEREO-B is consistent, within uncertainties, with the release time of the particles observed by this spacecraft, the EUV wave never reached the footpoint of the field lines connecting near-Earth observers with the Sun, even though an intense SEP event was observed there. We show that the west flank of the CME-driven shock propagating at high altitudes above the solar surface was most likely the source of the particles observed near Earth, but it did not leave any EUV trace on the solar disk. We conclude that the angular extent of the EUV wave on the solar surface did not agree with the longitudinal extent of the SEP event in the heliosphere. Hence EUV waves cannot be used reliably as a proxy for the solar phenomena that accelerates and injects energetic particles over broad ranges of longitudes.



rate research

Read More

Context: Late on 2013 August 19, STEREO-A, STEREO-B, MESSENGER, Mars Odyssey, and the L1 spacecraft, spanning a longitudinal range of 222{deg} in the ecliptic plane, observed an energetic particle flux increase. The widespread solar energetic particle (SEP) event was associated with a coronal mass ejection (CME) that came from a region located near the far-side central meridian from Earths perspective. The CME erupted in two stages, and was accompanied by a late M-class flare observed as a post-eruptive arcade, persisting low-frequency (interplanetary) type II and groups of shock-accelerated type III radio bursts, all of them making this SEP event unusual. Aims: There are two main objectives of this study, disentangling the reasons for the different intensity-time profiles observed by the spacecraft, especially at MESSENGER and STEREO-A locations, longitudinally separated by only 15{deg}, and unravelling the single solar source related with the widespread SEP event. Results: The solar source associated with the widespread SEP event is the shock driven by the CME, as the flare observed as a post-eruptive arcade is too late to explain the estimated particle onset. The different intensity-time profiles observed by STEREO-A, located at 0.97 au, and MESSENGER, at 0.33 au, can be interpreted as enhanced particle scattering beyond Mercurys orbit. The longitudinal extent of the shock does not explain by itself the wide spread of particles in the heliosphere. The particle increase observed at L1 may be attributed to cross-field diffusion transport, and this is also the case for STEREO-B, at least until the spacecraft is eventually magnetically connected to the shock when it reaches ~0.6 au.
A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (ISOIS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm^2 sr s MeV)^-1, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80 degrees east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona.
Context. The remote observations of solar flare ion acceleration are rather limited. There are theoretical predictions for signatures of ion acceleration in EUV line profiles. Previous tests involve observations of flares with no evidence for energetic ions. Aims. We aim to examine a source flare of impulsive (or 3He-rich) solar energetic particle events with EUV line spectroscopy. Methods. We inspect all (90+) reported 3He-rich flares of previous solar cycle 23 and find only four (recurrent) jets in the field of view of SOHO CDS. The jet with the most suitable spatial and temporal coverage is analyzed in detail. Results. Two enhanced (non-thermal) line broadenings are observed in the cooler chromospheric / transition-region lines and they are localized near the site where the closed magnetic loops reconnect with the open magnetic field lines. Both enhanced broadenings are found in the sites with redshifts in the lines, surrounded by the region with blueshifts. One enhanced line broadening is associated with a small flare without energetic particle signatures while another occurs just after the particle acceleration signatures of the main flare terminated. Conclusions. The observed excess broadening appears to be not directly related to the energetic ion production and motions. Further investigations where the critical impulsive phase of the flare is covered are required, ideally with high-resolution spectrometers intentionally pointed to the 3He-rich solar energetic particle source.
We analyze multi-wavelength and multi-viewpoint observations of a helically twisted plasma jet formed during a confined filament eruption on 10-11 April 2013. Given a rather large scale event with its high spatial and temporal resolution observations, it allows us to clearly understand some new physical details about the formation and triggering mechanism of twisting jet. We identify a pre-existing flux rope associated with a sinistral filament, which was observed several days before the event. The confined eruption of the filament within a null point topology, also known as an Eiffel tower (or inverted-Y) magnetic field configuration results in the formation of a twisted jet after the magnetic reconnection near a null point. The sign of helicity in the jet is found to be the same as that of the sign of helicity in the filament. Untwisting motion of the reconnected magnetic field lines gives rise to the accelerating plasma along the jet axis. The event clearly shows the twist injection from the pre-eruptive magnetic field to the jet.
154 - R. Bucik , D. E. Innes , U. Mall 2013
Using the SIT instrument aboard STEREO we have examined the abundance of the 3He during the ascending phase of solar cycle 24 from January 2010 through December 2012. We report on several cases when 3He-rich solar energetic particle events were successively observed on ACE and STEREO-A with delays consistent with the Carrington rotation rate. In the investigated period ACE and STEREO-A were significantly separated in the heliolongitude corresponding to solar rotation times of 5 to 10 days. We inspect STEREO-A EUV images and use the potential-field source-surface extrapolations together with in-situ magnetic field data to identify responsible solar sources. We find the 3He/4He ratio highly variable in these events and correlated between the spacecraft for the cases with the same connection region on the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا