Do you want to publish a course? Click here

On the cycle map of a finite group

284   0   0.0 ( 0 )
 Added by Masaki Kameko
 Publication date 2014
  fields
and research's language is English
 Authors Masaki Kameko




Ask ChatGPT about the research

Let p be an odd prime number. We show that there exists a finite group of order p^{p+3} whose the mod p cycle map from the mod p Chow ring of its classifying space to its ordinary mod p cohomology is not injective.



rate research

Read More

58 - Masaki Kameko 2016
We compute the Chern subgroup of the 4-th integral cohomology group of a certain classifying space and show that it is a proper subgroup. Such a classifying space gives us new counterexamples for the integral Hodge and Tate conjectures modulo torsion.
129 - Masaki Kameko 2014
We give non-torsion counterexamples against the integral Tate conjecture for finite fields. We extend the result due to Pirutka and Yagita for prime numbers 2,3,5 to all prime numbers.
Given a smooth and separated K(pi,1) variety X over a field k, we associate a cycle class in etale cohomology with compact supports to any continuous section of the natural map from the arithmetic fundamental group of X to the absolute Galois group of k. We discuss the algebraicity of this class in the case of curves over p-adic fields, and deduce in particular a new proof of Stixs theorem according to which the index of a curve X over a p-adic field k must be a power of p as soon as the natural map from the arithmetic fundamental group of X to the absolute Galois group of k admits a section. Finally, an etale adaptation of Beilinsons geometrization of the pronilpotent completion of the topological fundamental group allows us to lift this cycle class in suitable cohomology groups.
104 - Vladimir Drinfeld 2021
Let Sigma denote the prismatization of Spf (Z_p). The multiplicative group over Sigma maps to the prismatization of the multiplicative group over Spf (Z_p). We prove that the kernel of this map is the Cartier dual of some 1-dimensional formal group over Sigma. We obtain some results about this formal group (e.g., we describe its Lie algebra). We give a very explicit description of the pullback of the formal group to the quotient of the q-de Rham prism by the action of the multiplicative group of Z_p.
We analyze cohomological properties of the Krichever map and use the results to study Weierstrass cycles in moduli spaces and the tautological ring.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا