Do you want to publish a course? Click here

QCD Induced Di-boson Production in Association with Two Jets at NLO QCD

146   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We discuss results for di-boson plus two jets production processes at the LHC at NLO QCD. Issues related to the scale choice are reviewed. We focus on the distributions of the invariant mass and rapidity separation of the two hardest jets and show, for $W^pm gamma jj$ and $Zgamma jj$ production, how the contribution from the radiative decays of the massive gauge bosons can be significantly reduced.



rate research

Read More

After reviewing the main features of the GoSam framework for automated one-loop calculations, we present a selection of recent phenomenological results obtained with it. In particular, we focus on the recent calculation of NLO QCD corrections to the production of a Higgs boson in conjunction with jets at the LHC.
In this article we calculate the next-to-leading order (NLO) QCD corrections for single on-shell top-quark production in association with two jets at proton-proton colliders. The tW channel is assumed to be measured independently. The QCD corrections to the inclusive cross section are about 28 (22)% for top (anti-top) quark production at the 13 TeV LHC. Theoretical errors are dominated by scale uncertainties, which are found to be around 5% at NLO. Results for various kinematical distributions are also provided using a well-motivated dynamical scale. The QCD corrections are found to have a non-trivial dependence on the phase-space.
111 - G.Heinrich , S.P.Jones , M.Kerner 2019
We present results for Higgs boson pair production with variations of the trilinear Higgs boson self-coupling at next-to-leading order (NLO) in QCD including the full top quark mass dependence. Differential results at 14 TeV are presented, and we discuss the implications of anomalous trilinear couplings as well as differences between the PYTHIA 8.2 and HERWIG 7.1 parton showers in combination with POWHEG. The implementation of the NLO QCD calculation with variable Higgs boson self-coupling is made publicly available in the POWHEG-BOX-V2 Monte Carlo framework. A simple method for using the new implementation to study also variations of the top quark Yukawa coupling is described.
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.
We present the calculation of the NLO QCD corrections to the associated production of a Higgs boson and two jets, in the infinite top-mass limit. We discuss the technical details of the computation and we show the numerical impact of the radiative corrections on several observables at the LHC. The results are obtained by using a fully automated framework for fixed order NLO QCD calculations based on the interplay of the packages GoSam and Sherpa. The evaluation of the virtual corrections constitutes an application of the d-dimensional integrand-level reduction to theories with higher dimensional operators. We also present first results for the one-loop matrix elements of the partonic processes with a quark-pair in the final state, which enter the hadronic production of a Higgs boson together with three jets in the infinite top-mass approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا