No Arabic abstract
The formation of heavy fermion bands can occur by means of the conversion of a periodic array of local moments into itinerant electrons via the Kondo effect and the huge consequent Fermi-liquid renormalizations. Leggett predicted for liquid $^3$He that Fermi-liquid renormalizations change in the superconducting state, leading to a temperature dependence of the London penetration depth~$Lambda$ quite different from that in the BCS theory. Using Leggetts theory, as modified for heavy fermions, it is possible to extract from the measured temperature dependence of $Lambda$ in high quality samples both Landau parameters $F_0^s$ and $F_1^s$; this has never been accomplished before. A modification of the temperature dependence of the specific heat $C_mathrm{el}$, related to that of $Lambda$, is also expected. We have carefully determined the magnitude and temperature dependence of $Lambda$ in CeCoIn$_5$ by muon spin relaxation rate measurements to obtain $F_0^s = 36 pm 1$ and $F_1^s = 1.2 pm 0.3$, and find a consistent change in the temperature dependence of electronic specific heat $C_mathrm{el}$. This, the first determination of $F_1^s$ with a value~$ll F_0^s$ in a heavy fermion compound, tests the basic assumption of the theory of heavy fermions, that the frequency dependence of the self-energy is much more important than its momentum dependence.
We have succeeded in growing single crystals of the heavy-fermion superconductor CeCo(In1-xZnx)5 with x<=0.07. Measurements of specific heat, electrical resistivity, dc magnetization and ac susceptibility revealed that the superconducting (SC) transition temperature Tc decreases from 2.25 K (x=0) to 1.8 K (x=0.05) by doping Zn into CeCoIn5. Furthermore, these measurements indicate a development of a new ordered phase below T_o ~ 2.2 K for x=>0.05, characterized by the reduced magnetization and electrical resistivity in the ordered phase, and the enhancement of specific heat at T_o. This phase transition can be also recognized by the shoulder-like anomaly seen at H_o ~ 55 kOe in the field variations of the magnetization at low temperatures, which is clearly distinguished from the superconducting critical fields Hc2=49 kOe for x=0.05 and 42 kOe for x=0.07. We suggest from these results that the antiferromagnetic (AFM) order is generated by doping Zn, and the interplay between the SC and AFM orders is realized in CeCo(In1-xZnx)5.
Field-angle dependent specific heat measurement has been done on the heavy-fermion superconductor CeCoIn5 down to ~ 0.29 K, in a magnetic field rotating in the tetragonal c-plane. A clear fourfold angular oscillation is observed in the specific heat with the minima (maxima) occurring along the [100] ([110]) directions. Oscillation persists down to low fields H << Hc2, thus directly proving the existence of gap nodes. The results indicate that the superconducting gap symmetry is most probably of dxy type.
We report the observation of heavy-fermion superconducitivity in CeCoIn5 at Tc =2.3 K. When compared to the pressure-induced Tc of its cubic relative CeIn3 (Tc ~200 mK), the Tc of CeCoIn5 is remarkably high. We suggest that this difference may arise from magnetically mediated superconductivity in the layered crystal structure of CeCoIn5 .
The high field superconducting state in CeCoIn5 has been studied by transverse field muon spin rotation measurements with an applied field parallel to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T. At magnetic fields >= 4.8 T the muon Knight shift is enhanced and the superconducting transition changes from second order towards first order as predicted for Pauli-limited superconductors. The field and temperature dependence of the transverse muon spin relaxation rate sigma reveal paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the normal state close to Hc2 correlated spin fluctuations as described by the self consistent renormalization theory are observed. The results support the formation of a mode-coupled superconducting and antiferromagnetically ordered phase in CeCoIn5 for H directed parallel to the c-axis.
We report detailed very low temperature resistivity measurements on the heavy fermion compounds Ce_{1-x}La_{x}CoIn5 (x=0 and x=0.01), with current applied in two crystallographic directions [100] (basal plane) and [001] (perpendicular to the basal plane) under magnetic field applied in the [001] or [011] direction. We found a Fermi liquid (rho propto T^{2}) ground state, in all cases, for fields above the superconducting upper critical field. We discuss the possible location of a field induced quantum critical point with respect to Hc2(0), and compare our measurements with the previous reports in order to give a clear picture of the experimental status on this long debated issue.