The Next Generation Virgo Cluster Survey. XV. The photometric redshift estimation for background sources


Abstract in English

The Next Generation Virgo Cluster Survey is an optical imaging survey covering 104 deg^2 centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz-bands and one third in the r-band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point spread function-homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior which extends to iAB = 12.5 mag. When using the u*griz-bands, our photometric redshifts for 15.5 le i lesssim 23 mag or zphot lesssim 1 galaxies have a bias |Delta z| < 0.02, less than 5% outliers, and a scatter sigma_{outl.rej.} and an individual error on zphot that increase with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz-bands over the same magnitude and redshift range, the lack of the r-band increases the uncertainties in the 0.3 lesssim zphot lesssim 0.8 range (-0.05 < Delta z < -0.02, sigma_{outl.rej} ~ 0.06, 10-15% outliers, and zphot.err. ~ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(theta) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

Download