If the $X(3872)$ is described by the picture as a mixture of the charmonium and molecular $D^{ast} D$ states; $Y(3940)$ as a mixture of the $chi_{c0}$ and $D^ast D^ast$ states; and $X(4260)$ as a mixture of the tetra-quark and charmonium sates, their orthogonal combinations should also exist. We estimate the mass and residues of the states within the QCD sum rules method. We find that the mass splitting among $X$, $Y$ and their orthogonal states is at most $200MeV$. Experimental search of these new states can play critical role for establishing the nature of the new charmonium states.