Do you want to publish a course? Click here

Are Dusty Galaxies Blue? Insights on UV Attenuation from Dust-Selected Galaxies

184   0   0.0 ( 0 )
 Added by Caitlin Casey
 Publication date 2014
  fields Physics
and research's language is English
 Authors C.M. Casey




Ask ChatGPT about the research

Galaxies rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-$z$, here we investigate attenuation in dusty, star-forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15--500,$mu$m in the COSMOS field, in particular making use of {it Herschel} imaging, and a rich dataset on local galaxies, we find a empirical variation in the relationship between rest-frame UV slope ($beta$) and ratio of infrared-to-ultraviolet emission ($L_{rm IR}/L_{rm UV}equiv,IRX$) as a function of infrared luminosity, or total star formation rate, SFR. Both locally and at high-$z$, galaxies above SFR$gt$50,M$_odot$,yr$^{-1}$ deviate from the nominal $IRX-beta$ relation towards bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-$z$ dropout searches of $ll1$% at $zlt4-10$, providing independent verification that contamination from very dusty foreground galaxies is low in LBG searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g. galaxies with $>50$,M$_odot$,yr$^{-1}$, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at $zsim2$ exhibit steady-state star formation in secular disks.



rate research

Read More

We have targeted two recently discovered Lyman break galaxies (LBGs) to search for dust continuum and [CII] 158 micron line emission. The strongly lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the spectroscopically confirmed z=7.508 LBG z8-GND-5296 in the GOODS-N field have been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These observations have been combined with those of three z>6.5 Lya emitters (named HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits on their IR luminosity and star formation rate, dust mass, and UV attenuation. Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing the sub-LIRG regime ($L_{IR} <8.1 times 10^{10}$ Lsun) and very low dust masses ($M_d<1.6 times 10^7$ Msun). We find that all five galaxies are compatible with the Calzetti IRX-$beta$ relation, their UV attenuation is compatible with several indirect estimates from other methods (the UV slope, extrapolation of the attenuation measured from the IR/UV ratio at lower redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies studied here have an attenuation below the one expected from the mean relation of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly needed to directly determine the UV attenuation and dust content of the dominant population of high-z star-forming galaxies and to establish more firmly their dependence on stellar mass, redshift, and other properties.
Hot Dust-Obscured Galaxies (Hot DOGs) are among the most luminous galaxies in the Universe. Powered by highly obscured, possibly Compton-thick, active galactic nuclei (AGNs), Hot DOGs are characterized by SEDs that are very red in the mid-IR yet dominated by the host galaxy stellar emission in the UV and optical. An earlier study identified a sub-sample of Hot DOGs with significantly enhanced UV emission. One target, W0204-0506, was studied in detail and, based on Chandra observations, it was concluded that the enhanced emission was most likely due to either extreme unobscured star-formation (${rm SFR}>1000~M_{odot}~rm yr^{-1}$) or to light from the highly obscured AGN scattered by gas or dust into our line of sight. Here, we present a follow-up study of W0204-0506 as well as two more Hot DOGs with excess UV emission. For the two new objects we obtained Chandra/ACIS-S observations, and for all three targets we obtained HST/WFC3 F555W and F160W imaging. We conclude that the excess UV emission is primarily dominated by light from the central highly obscured, hyper-luminous AGN that has been scattered into our line of sight. We cannot rule out, however, that star-formation may significantly contribute to the UV excess of W0204-0506.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.
We build a set of composite galaxy SEDs by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ~4000 K_s-band selected galaxies, we define 38 composite galaxy SEDs that yield continuous low-resolution spectra (R~45) over the rest-frame range 0.1-4 um. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope ($beta$) in the IRX$-beta$ dust relation at 1<z<3. Blue star-forming composite SEDs show IRX and $beta$ values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U-V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts.
94 - Xiangcheng Ma 2019
We present a suite of 34 high-resolution cosmological zoom-in simulations consisting of thousands of halos up to M_halo~10^12 M_sun (M_star~10^10.5 M_sun) at z>=5 from the Feedback in Realistic Environments project. We post-process our simulations with a three-dimensional Monte Carlo dust radiative transfer code to study dust extinction, dust emission, and dust temperature within these simulated z>=5 galaxies. Our sample forms a tight correlation between infrared excess (IRX=F_IR/F_UV) and ultraviolet (UV)-continuum slope (beta_UV), despite the patchy, clumpy dust geometry shown in our simulations. We find that the IRX-beta_UV relation is mainly determined by the shape of the extinction curve and is independent of its normalization (set by the dust-to-gas ratio). The bolometric IR luminosity (L_IR) correlates with the intrinsic UV luminosity and the star formation rate (SFR) averaged over the past 10 Myr. We predict that at a given L_IR, the peak wavelength of the dust spectral energy distributions for z>=5 galaxies is smaller by a factor of 2 (due to higher dust temperatures on average) than at z=0. The higher dust temperatures are driven by higher specific SFRs and SFR surface densities with increasing redshift. We derive the galaxy UV luminosity functions (LFs) at z=5-10 from our simulations and confirm that a heavy attenuation is required to reproduce the observed bright-end UVLFs. We also predict the IRLFs and UV luminosity densities at z=5-10. We discuss the implications of our results on current and future observations probing dust attenuation and emission in z>=5 galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا