Discovery of Smoothly Evolving Blackbodies in the Early Afterglow of GRB 090618 : Evidence for a Spine-Sheath Jet?


Abstract in English

GRB 090618 is a bright GRB with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. As high resolution spectral data of emph{Swift}/XRT is available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the emph{Swift}/BAT, the emph{Swift}/XRT, and the emph{Fermi}/GBM detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence we investigated the combined data with a model consisting of two blackbodies and a power-law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: a) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, b) the ratio of temperatures and the fluxes of the two black bodies remains constant throughout the observations, c) the black body temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law emission, d) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower temperature blackbody shows a larger emitting radius than that of the higher temperature black body. We find some evidence that the underlying shape of the non-thermal emission is a cut-off power-law rather than a power-law. We sketch a spine-sheath jet model to explain our observations.

Download