Do you want to publish a course? Click here

Characterizing short-term stability for Boolean networks over any distribution of transfer functions

162   0   0.0 ( 0 )
 Added by C. Seshadhri
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

We present a characterization of short-term stability of random Boolean networks under emph{arbitrary} distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. It has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.



rate research

Read More

We consider the problem of studying the simulation capabilities of the dynamics of arbitrary networks of finite states machines. In these models, each node of the network takes two states 0 (passive) and 1 (active). The states of the nodes are updated in parallel following a local totalistic rule, i.e., depending only on the sum of active states. Four families of totalistic rules are considered: linear or matrix defined rules (a node takes state 1 if each of its neighbours is in state 1), threshold rules (a node takes state 1 if the sum of its neighbours exceed a threshold), isolated rules (a node takes state 1 if the sum of its neighbours equals to some single number) and interval rule (a node takes state 1 if the sum of its neighbours belong to some discrete interval). We focus in studying the simulation capabilities of the dynamics of each of the latter classes. In particular, we show that totalistic automata networks governed by matrix defined rules can only implement constant functions and other matrix defined functions. In addition, we show that t by threshold rules can generate any monotone Boolean functions. Finally, we show that networks driven by isolated and the interval rules exhibit a very rich spectrum of boolean functions as they can, in fact, implement any arbitrary Boolean functions. We complement this results by studying experimentally the set of different Boolean functions generated by totalistic rules on random graphs.
Classification of Non-linear Boolean functions is a long-standing problem in the area of theoretical computer science. In this paper, effort has been made to achieve a systematic classification of all n-variable Boolean functions, where only one affine Boolean function belongs to each class. Two different methods are proposed to achieve this classification. The first method is a recursive procedure that uses the Cartesian product of sets starting from the set of 1-variable Boolean function and in the second method classification is achieved through a set of invariant bit positions with respect to an affine function belonging to that class. The invariant bit positions also provide information concerning the size and symmetry properties of the classes/sub-classes, such that the members of classes/sub-classes satisfy certain similar properties.
Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., PNAS (2008)], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Fangting Li et al., PNAS (2004), Davidich et al., PLoS One (2009)], none or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.
We derive a master stability function (MSF) for synchronization in networks of coupled dynamical systems with small but arbitrary parametric variations. Analogous to the MSF for identical systems, our generalized MSF simultaneously solves the linear stability problem for near-synchronous states (NSS) for all possible connectivity structures. We also derive a general sufficient condition for stable near-synchronization and show that the synchronization error scales linearly with the magnitude of parameter variations.Our analysis underlines significant roles played by the Laplacian eigenvectors in the study of network synchronization of near-identical systems.
We show that a Boolean degree $d$ function on the slice $binom{[n]}{k} = { (x_1,ldots,x_n) in {0,1} : sum_{i=1}^n x_i = k }$ is a junta, assuming that $k,n-k$ are large enough. This generalizes a classical result of Nisan and Szegedy on the hypercube. Moreover, we show that the maximum number of coordinates that a Boolean degree $d$ function can depend on is the same on the slice and the hypercube.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا