Do you want to publish a course? Click here

Absorption Filaments Towards the Massive Clump G0.253+0.016

225   0   0.0 ( 0 )
 Added by John Bally
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

ALMA HCO+ observations of the infrared dark cloud G0.253+0.016 located in the Central Molecular Zone of the Galaxy are presented. The 89 GHz emission is area-filling, optically thick, and sub-thermally excited. Two types of filaments are seen in absorption against the HCO+ emission. Broad-line absorption filaments (BLAs) have widths of less than a few arcseconds (0.07 - 0.14 pc), lengths of 30 to 50 arcseconds (1.2 - 1.8 pc), and absorption profiles extending over a velocity range larger than 20 km/sec. The BLAs are nearly parallel to the nearby G0.18 non-thermal filaments and may trace HCO+ molecules gyrating about highly ordered magnetic fields located in front of G0.253+0.016 or edge-on sheets formed behind supersonic shocks propagating orthogonal to our line-of-sight in the foreground. Narrow-line absorption filaments (NLAs) have line-widths less than 20 km/sec. Some NLAs are also seen in absorption in other species with high optical depth such as HCN and occasionally in emission where the background is faint. The NLAs, which also trace low-density, sub-thermally excited HCO+ molecules, are mostly seen on the blueshifted side of the emission from G0.253+0.016. If associated with the surface of G0.253+0.016, the kinematics of the NLAs indicate that the cloud surface is expanding. The decompression of entrained, milli-Gauss magnetic fields may be responsible for the re-expansion of the surface layers of G0.253+0.016 as it recedes from the Galactic center following a close encounter with Sgr A.



rate research

Read More

The massive infrared dark cloud G0.253+0.016 projected 45pc from the Galactic centre contains ~10^5Msun of dense gas whilst being mostly devoid of observed star-formation tracers. To scrutinise the physical properties, dynamics and structure of this cloud with reference to its star-forming potential, we have carried out a concerted SMA and IRAM 30m study of this cloud in dust continuum, CO isotopologues, shock tracing molecules, as well as H$_2$CO to trace the gas temperature. We detect and characterise the dust cores within G0.253+0.016 at ~1.3 mm and find that the kinetic temperature of the gas is >320K on size-scales of ~0.15 pc. Analysis of the position-velocity diagrams of our observed lines show broad linewidths and strong shock emission in the south of the cloud, indicating that G0.253+0.016 is colliding with another cloud at v(LSR)~70 km/s. We confirm via an analysis of the observed dynamics in the CMZ that it is an elongated structure, orientated with Sgr B2 closer to the Sun than Sgr A*, however our results suggest that the actual geometry may be more complex than an elliptical ring. We find that the column density PDF of G0.253+0.016 is log-normal with no discernible power-law tail, consistent with little star formation, and that its width can be explained in the framework of theory predicting the density structure of clouds created by supersonic, magnetised turbulence. We also present the delta-variance spectrum of this region, and show it is consistent with that expected for clouds with no star formation. Using G0.253+0.016 as a test-bed of the conditions required for star formation in a different physical environment to that of nearby clouds, we also conclude that there is not one column density threshold for star formation, but instead this value is dependant on the local physical conditions. [Abbrv.]
224 - L. F. Rodriguez , L.Zapata 2013
G0.253+0.016 is a remarkable massive infrared dark cloud located within $sim$100 pc of the galactic center. With a high mass of $1.3 times 10^5 M_odot$, a compact average radius of $sim$2.8 pc and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence on three compact thermal radio sources projected against this cloud. These radio sources are interpreted as HII regions powered by $sim$B0.5 ZAMS stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.
Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic Center may differ substantially from spiral-arm clouds. Here we determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field and filamentary structure. Using column-density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width W_fil=0.17$pm$0.08pc and the sonic scale {lambda}_sonic=0.15$pm$0.11pc of the turbulence, and find W_fil~{lambda}_sonic. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra, which is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity PDF. After subtracting the gradient to isolate the turbulent motions, we find a nearly Gaussian velocity PDF typical for turbulence. We measure the total and turbulent velocity dispersion, 8.8$pm$0.2km/s and 3.9$pm$0.1km/s, respectively. Using magnetohydrodynamical simulations, we find that G0.253+0.016s turbulent magnetic field B_turb=130$pm$50$mu$G is only ~1/10 of the ordered field component. Combining these measurements, we reconstruct the dominant turbulence driving mode in G0.253+0.016 and find a driving parameter b=0.22$pm$0.12, indicating solenoidal (divergence-free) driving. We compare this to spiral-arm clouds, which typically have a significant compressive (curl-free) driving component (b>0.4). Motivated by previous reports of strong shearing motions in the CMZ, we speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this reduces the star formation rate (SFR) by a factor of 6.9 compared to typical nearby clouds.
We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using the Combined Array for Research in Millimeter--wave Astronomy (CARMA) and the Submillimeter Array (SMA). This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2x10^5 M_sun) into a radius of only 3pc, but it is essentially starless. G0.253+0.016 therefore violates star formation laws presently used to explain trends in galactic and extragalactic star formation by a factor ~45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths 1km/s---probably the narrowest lines reported for the GC region to date---are found. Evolution over several 10^5 yr is needed before more massive cores, and possibly an Arches--like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.
133 - M. Zoccali , E. Valenti , F. Surot 2021
We analyse the near infrared colour magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I at the VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of +/-0.16 and a systematic error of +/-0.20 kpc. This is significantly closer than what is generally assumed, i.e., that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic center. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by 1 order of magnitude from the Kennicutt-Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic center region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy central molecular zone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا