Do you want to publish a course? Click here

Bosonic Coherent Motions in the Universe

93   0   0.0 ( 0 )
 Added by Jihn E. Kim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We mini-review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, dark energy, and inflation. Among these, here we focus on the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment briefly on the panoply of the other roles of spin-0 bosons.



rate research

Read More

The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way.
We study a Dark Matter (DM) model in which the dominant coupling to the standard model occurs through a neutrino-DM-scalar coupling. The new singlet scalar will generically have couplings to nuclei/electrons arising from renormalizable Higgs portal interactions. As a result the DM particle $X$ can convert into a neutrino via scattering on a target nucleus $mathcal{N}$: $ X + mathcal{N} rightarrow u + mathcal{N}$, leading to striking signatures at direct detection experiments. Similarly, DM can be produced in neutrino scattering events at neutrino experiments: $ u + mathcal{N} rightarrow X + mathcal{N}$, predicting spectral distortions at experiments such as COHERENT. Furthermore, the model allows for late kinetic decoupling of dark matter with implications for small-scale structure. At low masses, we find that COHERENT and late kinetic decoupling produce the strongest constraints on the model, while at high masses the leading constraints come from DM down-scattering at XENON1T and Borexino. Future improvement will come from CE$ u$NS data, ultra-low threshold direct detection, and rare kaon decays.
The thermal decoupling description of dark matter (DM) and co-annihilating partners is reconsidered. If DM is realized at around the TeV-mass region or above, even the heaviest electroweak force carriers could act as long-range forces, leading to the existence of meta-stable DM bound states. The formation and subsequent decay of the latter further deplete the relic density during the freeze-out process on top of the Sommerfeld enhancement, allowing for larger DM masses. While so far the bound-state formation was described via the emission of an on-shell mediator ($W^{pm}$, $Z$, $H$, $g$, photon or exotic), we point out that this particular process does not have to be the dominant scattering-bound state conversion channel in general. If the mediator is coupled in a direct way to any relativistic species present in the Early Universe, the bound-state formation can efficiently occur through particle scattering, where a mediator is exchanged virtually. To demonstrate that such a virtually stimulated conversion process can dominate the on-shell emission even for all temperatures, we analyze a simplified model where DM is coupled to only one relativistic species in the primordial plasma through an electroweak-scale mediator. We find that the bound-state formation cross section via particle scattering can exceed the on-shell emission by up to several orders of magnitude.
Higgsplosion is a dynamical mechanism that introduces an exponential suppression of quantum fluctuations beyond the Higgsplosion energy scale E_* and further guarantees perturbative unitarity in multi-Higgs production processes. By calculating the Higgsplosion scale for spin 0, 1/2, 1 and 2 particles at leading order, we argue that Higgsplosion regulates all n-point functions, thereby embedding the Standard Model of particle physics and its extensions into an asymptotically safe theory. There are no Landau poles and the Higgs self-coupling stays positive. Asymptotic safety is of particular interest for theories of particle physics that include quantum gravity. We argue that in a Hippsloding theory one cannot probe shorter and shorter length scales by increasing the energy of the collision beyond the Higgsplosion energy and there is a minimal length set by r_* ~ 1/E_* that can be probed. We further show that Higgsplosion in consistent and not in conflict with models of inflation and the existence of axions. There is also a possibility of testing Higgsplosion experimentally at future high energy experiments.
257 - Gilly Elor , Robert McGehee 2020
We present a testable mechanism of low-scale baryogenesis and dark matter production in which neither baryon nor lepton number are violated. Charged $D$ mesons are produced out-of-equilibrium at tens of MeV temperatures. The $D$ mesons quickly undergo CP-violating decays to charged pions, which then decay into dark-sector leptons without violating lepton number. To transfer this lepton asymmetry to the baryon asymmetry, the dark leptons scatter on additional dark-sector states charged under lepton and baryon number. Amusingly, this transfer proceeds without electroweak sphalerons, which are no longer active at such low scales. We present two example models which can achieve this transfer while remaining consistent with current limits. The required amount of CP violation in charged $D$ meson decays, while currently allowed, will be probed by colliders. Additionally, the relevant decays of charged pions to dark-sector leptons have been constrained by the PIENU and PSI experiments and will be further explored in upcoming experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا