Do you want to publish a course? Click here

Versatile low-Reynolds-number swimmer with three-dimensional maneuverability

126   0   0.0 ( 0 )
 Added by Mir Abbas Jalali
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We design and simulate the motion of a new swimmer, the {it Quadroar}, with three dimensional translation and reorientation capabilities in low Reynolds number conditions. The Quadroar is composed of an $texttt{I}$-shaped frame whose body link is a simple linear actuator, and four disks that can rotate about the axes of flange links. The time symmetry is broken by a combination of disk rotations and the one-dimensional expansion/contraction of the body link. The Quadroar propels on forward and transverse straight lines and performs full three dimensional reorientation maneuvers, which enable it to swim along arbitrary trajectories. We find continuous operation modes that propel the swimmer on planar and three dimensional periodic and quasi-periodic orbits. Precessing quasi-periodic orbits consist of slow lingering phases with cardioid or multiloop turns followed by directional propulsive phases. Quasi-periodic orbits allow the swimmer to access large parts of its neighboring space without using complex control strategies. We also discuss the feasibility of fabricating a nano-scale Quadroar by photoactive molecular rotors.



rate research

Read More

The motion of biological micro-robots -- similar to that of swimming microorganisms such as bacteria or spermatozoa -- is governed by different physical rules than what we experience in our daily life. This is particularly due to the low-Reynolds-number condition of swimmers in micron scales. The Quadroar swimmer, with three-dimensional maneuverability, has been introduced for moving in these extreme cases: either as a bio-medical micro-robot swimming in biological fluids or a mm-scale robot performing inspection missions in highly viscous fluid reservoirs. Our previous studies address the theoretical modeling of this type of swimmer system. In this work, we present the mechatronic design, fabrication, and experimental study of a mm-scale Quadroar swimmer. We describe the design methodology and component selection of the system based on the required performance. A supervisory control scheme is presented to achieve an accurate trajectory tracking for all the actuators used in the swimmer. Finally, we have conducted experiments in silicone oil (with 5000 cP viscosity) where two primary modes of swimming - forward translation and planar reorientation - have been tested and compared with the theoretical model.
122 - M. Leoni 2009
Swimming and pumping at low Reynolds numbers are subject to the Scallop theorem, which states that there will be no net fluid flow for time reversible motions. Living organisms such as bacteria and cells are subject to this constraint, and so are existing and future artificial nano-bots or microfluidic pumps. We study a very simple mechanism to induce fluid pumping, based on the forced motion of three colloidal beads through a cycle that breaks time-reversal symmetry. Optical tweezers are used to vary the inter-bead distance. This model is inspired by a strut-based theoretical swimmer proposed by Najafi and Golestanian [Phys.Rev. E, 69, 062901, 2004], but in this work the relative softness of the optical trapping potential introduces a new control parameter. We show that this system is able to generate flow in a controlled fashion, characterizing the model experimentally and numerically.
129 - A. M. Leshansky 2009
It has been known for some time that some microorganisms can swim faster in high-viscosity gel-forming polymer solutions. These gel-like media come to mimic highly viscous heterogeneous environment that these microorganisms encounter in-vivo. The qualitative explanation of this phenomena first offered by Berg and Turner [Nature (London) 278, 349 (1979)], suggests that propulsion enhancement is a result of flagellum pushing on quasi-rigid loose polymer network formed in some polymer solutions. Inspired by these observations, inertia-less propulsion in a heterogeneous viscous medium composed of sparse array of stationary obstacles embedded into incompressible Newtonian liquid is considered. It is demonstrated that for prescribed propulsion gaits, including propagating surface distortions and rotating helical filament, the propulsion speed is enhanced when compared to swimming in purely viscous solvent. It is also shown that the locomotion in heterogenous viscous media is characterized by improved hydrodynamic efficiency. The results of the rigorous numerical simulation of the rotating helical filament propelled through a random sparse array of stationary obstructions are in close agreement with predictions of the proposed resistive force theory based on effective media approximation.
Recent experiments have demonstrated that small-scale rotary devices installed in a microfluidic channel can be driven passively by the underlying flow alone without resorting to conventionally applied magnetic or electric fields. In this work, we conduct a theoretical and numerical study on such a flow-driven watermill at low Reynolds number, focusing on its hydrodynamic features. We model the watermill by a collection of equally-spaced rigid rods. Based on the classical resistive force (RF) theory and direct numerical simulations, we compute the watermills instantaneous rotational velocity as a function of its rod number $N$, position and orientation. When $N geq 4$, the RF theory predicts that the watermills rotational velocity is independent of $N$ and its orientation, implying the full rotational symmetry (of infinity order), even though the geometrical configuration exhibits a lower-fold rotational symmetry; the numerical solutions including hydrodynamic interactions show a weak dependence on $N$ and the orientation. In addition, we adopt a dynamical system approach to identify the equilibrium positions of the watermill and analyse their stability. We further compare the theoretically and numerically derived rotational velocities, which agree with each other in general, while considerable discrepancy arises in certain configurations owing to the hydrodynamic interactions neglected by the RF theory. We confirm this conclusion by employing the RF-based asymptotic framework incorporating hydrodynamic interactions for a simpler watermill consisting of two or three rods and we show that accounting for hydrodynamic interactions can significantly enhance the accuracy of the theoretical predictions.
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number, Ri, everywhere. At higher values of R there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا