No Arabic abstract
The critical cooling rate $R_{rm c}$ above which charge ordering is kinetically avoided upon cooling, which results in charge-glass formation, was investigated for the geometrically frustrated system $theta$-(BEDT-TTF)$_2X$. X-ray diffraction experiments revealed that $theta$-(BEDT-TTF)$_2$TlCo(SCN)$_4$ exhibits a horizontally charge-ordered state, and kinetic avoidance of this state requires rapid cooling of faster than 150 K/min. This value is markedly higher than that reported for two other isostructural $theta$-type compounds, thus demonstrating the lower charge-glass-forming ability of $X$ $=$ TlCo(SCN)$_4$. In accounting for the systematic variations of $R_{rm c}$ among the three $theta$-(BEDT-TTF)$_2X$, we found that stronger charge frustration leads to superior charge-glass former. Our results suggest that charge frustration tends to slow the kinetics of charge ordering.
Using the Lanczos exact-diagonalization and density-matrix renormalization group methods, we study the extended Hubbard model at quarter filling defined on the anisotropic triangular lattice. We focus on charge ordering (CO) phenomena induced by onsite and intersite Coulomb interactions. We determine the ground-state phase diagram including three CO phases, i.e., diagonal, vertical, and three-fold CO phases, based on the calculated results of the hole density and double occupancy. We also calculate the dynamical density-density correlation functions and find possible coexistence of the diagonal and three-fold charge fluctuations in a certain parameter region where the onsite and intersite interactions compete. Furthermore, the characteristic features of the optical conductivity for each CO phase are discussed.
De Haas-van Alphen oscillations are studied for Fermi surfaces illustrating the Pippards model, commonly observed in multiband organic metals. Field- and temperature-dependent amplitude of the various Fourier components, linked to frequency combinations arising from magnetic breakdown between different bands, are considered. Emphasis is put on the Onsager phase factor of these components. It is demonstrated that, in addition to the usual Maslov index, field-dependent phase factors must be considered to precisely account for the data at high magnetic field. We present compelling evidence of the existence of such contributions for the organic metal theta-(BEDT-TTF)4CoBr4(C6H4Cl2).
In the most studied family of organic superconductors kappa-(BEDT-TTF)_2X, the BEDT-TTF molecules that make up the conducting planes are coupled as dimers. For some anions X, an antiferromagnetic insulator is found at low temperatures adjacent to superconductivity. With an average of one hole carrier per dimer, the BEDT-TTF band is effectively 1/2-filled. Numerous theories have suggested that fluctuations of the magnetic order can drive superconducting pairing in these models, even as direct calculations of superconducting pairing in monomer 1/2-filled band models find no superconductivity. Here we present accurate zero-temperature Density Matrix Renormalization Group (DMRG) calculations of a dimerized lattice with one hole per dimer. While we do find an antiferromagnetic state in our results, we find no evidence for superconducting pairing. This further demonstrates that magnetic fluctuations in the effective 1/2-filled band approach do not drive superconductivity in these and related materials.
In an ultrasonic experiment, we have investigated the temperature profile of the velocity of longitudinal elastic waves propagating along a direction perpendicular to the layers in the organic superconductors kappa-(BEDT-TTF)_2X, X = Cu(SCN)_2 and Cu[N(CN)_2]Br. Although a small decrease of the velocity is observed at the superconducting transition, the most anomalous behavior is obtained in the normal metallic state where an important softening is identified around 40-50 K. In order to characterize the origin of this anomaly, we have studied its behavior under the application of hydrostatic pressure. The observed behavior is found to mimic those of the transport and magnetic properties of these materials which have been attributed to the magnetic fluctuations. Following the example of one-dimensional insulating systems where coupling between longitudinal acoustic waves and magnetic fluctuations is known to occur, our results suggest that the pseudo-gap regime of these two-dimensional organic superconductors is dominated by a similar mechanism.
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyse theoretically ADMR in unconventional (or nodal) charge density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in alpha-(BEDT-TTF)_2KHg(SCN)_4.