Do you want to publish a course? Click here

Computational approach to hyperelliptic Riemann surfaces

161   0   0.0 ( 0 )
 Added by Christian Klein
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a computational approach to general hyperelliptic Riemann surfaces in Weierstrass normal form. The surface is either given by a list of the branch points, the coefficients of the defining polynomial or a system of cuts for the curve. A canonical basis of the homology is introduced algorithmically for this curve. The periods of the holomorphic differentials and the Abel map are computed with the Clenshaw-Curtis method in order to achieve spectral accuracy. The code can handle almost degenerate Riemann surfaces. This work generalizes previous work on real hyperelliptic surfaces with prescribed cuts to arbitrary hyperelliptic surfaces. As an example, solutions to the sine-Gordon equation in terms of multi-dimensional theta functions are studied, also in the solitonic limit of these solutions.



rate research

Read More

105 - J. Frauendiener , C. Klein 2015
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
We investigate the number and the geometry of smooth hyperelliptic curves on a general complex abelian surface. We show that the only possibilities of genera of such curves are $2,3,4$ and $5$. We focus on the genus 5 case. We prove that up to translation, there is a unique hyperelliptic curve in the linear system of a general $(1,4)$ polarised abelian surface. Moreover, the curve is invariant with respect to a subgroup of translations isomorphic to the Klein group. We give the decomposition of the Jacobian of such a curve into abelian subvarieties displaying Jacobians of quotient curves and Prym varieties. Motivated by the construction, we prove the statement: every etale Klein covering of a hyperelliptic curve is a hyperelliptic curve, provided that the group of $2$-torsion points defining the covering is non-isotropic with respect to the Weil pairing and every element of this group can be written as a difference of two Weierstrass points.
The Quillen connection on ${mathcal L} rightarrow {mathcal M}_g$, where ${mathcal L}^*$ is the Hodge line bundle over the moduli stack of smooth complex projective curves curves ${mathcal M}_g$, $g geq 5$, is uniquely determined by the condition that its curvature is the Weil--Petersson form on ${mathcal M}_g$. The bundle of holomorphic connections on ${mathcal L}$ has a unique holomorphic isomorphism with the bundle on ${mathcal M}_g$ given by the moduli stack of projective structures. This isomorphism takes the $C^infty$ section of the first bundle given by the Quillen connection on ${mathcal L}$ to the $C^infty$ section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely.
For all k>0 integer, we consider the regularised I-function of the family of del Pezzo surfaces of degree 8k+4 in P(2,2k+1,2k+1, 4k+1), first constructed by Johnson and Kollar. We show that this function, which is of hypergeometric type, is a period of an explicit pencil of curves. Thus the pencil is a candidate LG mirror of the family of del Pezzo surfaces. The main feature of these surfaces, which makes the mirror construction especially interesting, is that the anticanonical system is empty: because of this, our mirrors are not covered by any other construction known to us. We discuss connections to the work of Beukers, Cohen and Mellit on hypergeometric functions.
Special Bohr - Sommerfeld geometry, first formulated for simply connected symplectic manifolds (or for simple connected algebraic varieties), gives rise to some natural problems for the simplest example in non simply connected case. Namely for any algebraic curve one can define a correspondence between holomorphic differentials and certain finite graphs. Here we ask some natural questions appear with this correspondence. It is a partial answer to the question of A. Varchenko about possibility of applications of Special Bohr -Sommerfeld geometry in non simply connected case. The russian version has been translated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا