Do you want to publish a course? Click here

Extremal functions for real convex bodies

254   0   0.0 ( 0 )
 Added by Sione Ma`u
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We study the smoothness of the Siciak-Zaharjuta extremal function associated to a convex body in $mathbb{R}^2$. We also prove a formula relating the complex equilibrium measure of a convex body in $mathbb{R}^n$ to that of its Robin indicatrix. The main tool we use are extremal ellipses.



rate research

Read More

121 - N. Levenberg , F. Wielonsky 2021
Polynomial spaces associated to a convex body $C$ in $({bf R}^+)^d$ have been the object of recent studies. In this work, we consider polynomial spaces associated to non-convex $C$. We develop some basic pluripotential theory including notions of $C-$extremal plurisubharmonic functions $V_{C,K}$ for $Ksubset {bf C}^d$ compact. Using this, we discuss Bernstein-Walsh type polynomial approximation results and asymptotics of random polynomials in this non-convex setting.
154 - Guangbin Ren , Xieping Wang 2015
In this paper, we present an alternative and elementary proof of a sharp version of the classical boundary Schwarz lemma by Frolova et al. with initial proof via analytic semigroup approach and Julia-Caratheodory theorem for univalent holomorphic self-mappings of the open unit disk $mathbb Dsubset mathbb C$. Our approach has its extra advantage to get the extremal functions of the inequality in the boundary Schwarz lemma.
We prove that for any given upper semicontinuous function $varphi$ on an open subset $E$ of $mathbb C^nsetminus{0}$, such that the complex cone generated by $E$ minus the origin is connected, the homogeneous Siciak-Zaharyuta function with the weight $varphi$ on $E$, can be represented as an envelope of a disc functional.
104 - S. K. Sahoo , N. L. Sharma 2014
A motivation comes from {em M. Ismail and et al.: A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77--84} to study a generalization of close-to-convex functions by means of a $q$-analog of a difference operator acting on analytic functions in the unit disk $mathbb{D}={zin mathbb{C}:,|z|<1}$. We use the terminology {em $q$-close-to-convex functions} for the $q$-analog of close-to-convex functions. The $q$-theory has wide applications in special functions and quantum physics which makes the study interesting and pertinent in this field. In this paper, we obtain some interesting results concerning conditions on the coefficients of power series of functions analytic in the unit disk which ensure that they generate functions in the $q$-close-to-convex family. As a result we find certain dilogarithm functions that are contained in this family. Secondly, we also study the famous Bieberbach conjecture problem on coefficients of analytic $q$-close-to-convex functions. This produces several power series of analytic functions convergent to basic hypergeometric functions.
In this paper we prove a quaternionic positive real lemma as well as its generalized version, in case the associated kernel has negative squares for slice hyperholomorphic functions. We consider the case of functions with positive real part in the half space of quaternions with positive real part, as well as the case of (generalized) Schur functions in the open unit ball.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا