Background: The high momentum distribution of atoms in two spin-state ultra-cold atomic gases with strong short-range interactions between atoms with different spins, which can be described using Tans contact, are dominated by short range pairs of different fermions and decreases as $k^{-4}$. In atomic nuclei the momentum distribution of nucleons above the Fermi momentum ($k>k_F approx 250$ Mev/c) is also dominated by short rangecorrelated different-fermion (neutron-proton) pairs. Purpose: Compare high-momentum unlike-fermion momentum distributions in atomic and nuclear systems. Methods: We show that, for $k>k_F$ MeV/c, nuclear momentum distributions are proportional to that of the deuteron. We then examine the deuteron momentum distributions derived from a wide variety of modern nucleon-nucleon potentials that are consistent with $NN$-scattering data. Results: The high momentum tail of the deuteron momentum distribution, and hence of the nuclear momentum distributions appears to decrease as $k^{-4}$. This behavior is shown to arise from the effects of the tensor part of the nucleon-nucleon potential. In addition, when the dimensionless interaction strength for the atomic system is chosen to be similar to that of atomic nuclei, the probability for finding a short range different-fermion pair in both systems is the same. Conclusions: Although nuclei do not satisfy all of the conditions for Tans contact, the observed similarity of the magnitude and $k^{-4}$ shape of nuclear and atomic momentum distributions is remarkable because these systems differ by about $20$ orders of magnitude in density. This similarity may lead to a greater understanding of nuclei and the density dependence of nuclear systems.