No Arabic abstract
Background: The high momentum distribution of atoms in two spin-state ultra-cold atomic gases with strong short-range interactions between atoms with different spins, which can be described using Tans contact, are dominated by short range pairs of different fermions and decreases as $k^{-4}$. In atomic nuclei the momentum distribution of nucleons above the Fermi momentum ($k>k_F approx 250$ Mev/c) is also dominated by short rangecorrelated different-fermion (neutron-proton) pairs. Purpose: Compare high-momentum unlike-fermion momentum distributions in atomic and nuclear systems. Methods: We show that, for $k>k_F$ MeV/c, nuclear momentum distributions are proportional to that of the deuteron. We then examine the deuteron momentum distributions derived from a wide variety of modern nucleon-nucleon potentials that are consistent with $NN$-scattering data. Results: The high momentum tail of the deuteron momentum distribution, and hence of the nuclear momentum distributions appears to decrease as $k^{-4}$. This behavior is shown to arise from the effects of the tensor part of the nucleon-nucleon potential. In addition, when the dimensionless interaction strength for the atomic system is chosen to be similar to that of atomic nuclei, the probability for finding a short range different-fermion pair in both systems is the same. Conclusions: Although nuclei do not satisfy all of the conditions for Tans contact, the observed similarity of the magnitude and $k^{-4}$ shape of nuclear and atomic momentum distributions is remarkable because these systems differ by about $20$ orders of magnitude in density. This similarity may lead to a greater understanding of nuclei and the density dependence of nuclear systems.
We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.
The atomic nucleus is made of protons and neutrons (nucleons), that are themselves composed of quarks and gluons. Understanding how the quark-gluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modification, known as the EMC effect, was first observed over 35 years ago, there is still no generally accepted explanation of its cause. Recent observations suggest that the EMC effect is related to close-proximity Short Range Correlated (SRC) nucleon pairs in nuclei. Here we report the first simultaneous, high-precision, measurements of the EMC effect and SRC abundances. We show that the EMC data can be explained by a universal modification of the structure of nucleons in neutron-proton (np) SRC pairs and present the first data-driven extraction of this universal modification function. This implies that, in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have its quark structure distorted.
We present a detailed investigation of the dynamics of two physically different qubit models, dephasing under the effect of an ultracold atomic gas in a Bose-Einstein condensed (BEC) state. We study the robustness of each qubit probe against environmental noise; even though the two models appear very similar at a first glance, we demonstrate that they decohere in a strikingly different way. This result holds significance for studies of reservoir engineering as well as for using the qubits as quantum probes of the ultracold gas. For each model we study whether and when, upon suitable manipulation of the BEC, the dynamics of the qubit can be described by a (non-)Markovian process and consider the the effect of thermal fluctuations on the qubit dynamics. Finally, we provide an intuitive explanation for the phenomena we observe in terms of the spectral density function of the environment.
We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.