No Arabic abstract
Majorana fermion (MF) excitations in solid state system have non-Abelian statistics which is essential for topological quantum computation. Previous proposals to realize MF, however, generally requires fine-tuning of parameters. Here we explore a platform which avoids the fine-tuning problem, namely a ferromagnetic chain deposited on the surface of a spin-orbit coupled $s$-wave superconductor. We show that it generically supports zero-energy topological MF excitations near the two ends of the chain with minimal fine-tuning. Depending on the strength of the ferromagnetic moment in the chain, the number of MFs at each end, $n$, can be either one or two, and should be revealed by a robust zero-bias peak (ZBP) of height $2ne^2/h$ in scanning tunneling microscopy (STM) measurements which would show strong (weak) signals at the ends (middle) of the chain. The role of an approximate chiral symmetry which gives an integer topological invariant to the system is discussed.
Two majorana Fermions (MFs) localized at the two ends of the topological superconducting wire can interfere with each other and form the well known $4pi$ Josephson current. We reveal that the density of states (Dos) for the electron part and the hole part also follow a parity correlated $4pi$ period oscillation, while the Dos displays a $2pi$ period oscillation when two trivial states interfere with each other. Thus, the period of Dos oscillation can be used to distinguish the MFs from the trivial localized states. Interestingly, such phenomena can be directly observed in a short superconducting wire controlled by the gate voltage. This largely simplifies the experimental setup. We suggest that the interference effects can be detected through two STM leads or two norm leads.
Motivated by the spin-momentum locking of electrons at the boundaries of topological insulators, we study a one-dimensional system of spin-orbit coupled massless Dirac electrons with $s$-wave superconducting pairing. As a result of the spin-orbit coupling, our model has only two kinds of linearly dispersing modes, which we take to be right-moving spin-up and left-moving spin-down. Both lattice and continuum models are studied. In the lattice model, we find that a single Majorana zero energy mode appears at each end of a finite system provided that the $s$-wave pairing has an extended form, with the nearest-neighbor pairing being larger than the on-site pairing. We confirm this both numerically and analytically by calculating the winding number. Next we study a lattice version of a model with both Schrodinger and Dirac-like terms and find that the model hosts a topological transition between topologically trivial and non-trivial phases depending on the relative strength of the Schrodinger and Dirac terms. We then study a continuum system consisting of two $s$-wave superconductors with different phases of the pairing. Remarkably, we find that the system has a {it single} Andreev bound state which is localized at the junction. When the pairing phase difference crosses a multiple of $2 pi$, an Andreev bound state touches the top of the superconducting gap and disappears, and a different state appears from the bottom of the gap. We also study the AC Josephson effect in such a junction with a voltage bias that has both a constant $V_0$ and a term which oscillates with a frequency $omega$. We find that, in contrast to standard Josephson junctions, Shapiro plateaus appear when the Josephson frequency $omega_J= 2eV_0/hbar$ is a rational fraction of $omega$. We discuss experiments which can realize such junctions.
Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum information science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of $^{40}$K atoms.
We use micro-focus Brillouin light scattering spectroscopy to study the effects of spin-orbit torque on thermal spin waves in almost angular-momentum compensated ferrimagnetic CoGd alloy films. The spin-orbit torque is produced by the electric current flowing in the Pt layer adjacent to CoGd. Both the ferromagnetic and the exchange modes are detected in our measurements. The intensity and the linewidth of the ferromagnetic mode are modified by the spin-orbit torque. In contrast, the properties of the exchange mode are unaffected by the spin-orbit torque. We also find that the frequencies and the linewidths of both modes are significantly modified by Joule heating, due to the strong temperature dependence of the magnetic properties of CoGd in the vicinity of angular momentum compensation point. Our results provide insight into the mechanisms that can enable the implementation of sub-THz magnetic nano-oscillators based on ferrimagnetic materials, as well as related effects in antiferromagnets.
The excitation gap above the Majorana fermion (MF) modes at the ends of 1D topological superconducting (TS) semiconductor wires scales with the bulk quasiparticle gap E_{qp}. This gap, also called minigap, facilitates experimental detection of the pristine TS state and MFs at experimentally accessible temperatures T << E_{qp}. Here we show that the linear scaling of minigap with E_{qp} can fail in quasi-1D wires with multiple confinement bands when the applied Zeeman field is greater than or equal to about half of the confinement-induced bandgap. TS states in such wires have an approximate chiral symmetry supporting multiple near zero energy modes at each end leading to a minigap which can effectively vanish. We show that the problem of small minigap in such wires can be resolved by forcing the system to break the approximate chirality symmetry externally with a second Zeeman field. Although experimental signatures such as zero bias peak from the wire ends is suppressed by the second Zeeman field above a critical value, such a field is required in some important parameter regimes of quasi-1D wires to isolate the topological physics of end state MFs. We also discuss the crucial difference of our minigap calculations from the previously reported minigap results appropriate for idealized spinless p-wave superconductors and explain why the clustering of fermionic subgap states around the zero energy Majorana end state with increasing chemical potential seen in the latter system does not apply to the experimental TS states in spin-orbit coupled nanowires.