Do you want to publish a course? Click here

Unlocking the Axion-Dilaton in 5D Supergravity

261   0   0.0 ( 0 )
 Added by Joris Raeymaekers
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We revisit supersymmetric solutions to five dimensional ungauged N=1 supergravity with dynamic hypermultiplets. In particular we focus on a truncation to the axion-dilaton contained in the universal hypermultiplet. The relevant solutions are fibrations over a four-dimensional Kahler base with a holomorphic axion-dilaton. We focus on solutions with additional symmetries and classify Killing vectors which preserve the additional structure imposed by supersymmetry; in particular we extend the existing classification of solutions with a space-like U(1) isometry to the case where the Killing vector is rotational. We elaborate on general geometrical aspects which we illustrate in some simple examples. We especially discuss solutions describing the backreaction of M2-branes, which for example play a role in the black hole deconstruction proposal for microstate geometries.



rate research

Read More

The minimal Starobinsky supergravity with the inflaton (scalaron) and the goldstino in a massive vector supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kahler potential and a superpotential. The Kachru-Kallosh-Linde-Trivedi (KKLT)-type mechanism in the presence of a constant term in the superpotential is applied to stabilize the dilaton/axion during inflation, and it is shown to lead to an instability. The instability is cured by adding the alternative Fayet-Iliopoulos (FI) term that does not lead to the gauged $R$-symmetry. Other stabilization mechanisms, based on the Wess-Zumino (WZ)-type superpotential, are also studied in the presence of the FI term. A possible connection to a D3-brane is briefly discussed too.
We propose a superspace formulation for the Weyl multiplet of N=1 conformal supergravity in five dimensions. The corresponding superspace constraints are invariant under super-Weyl transformations generated by a real scalar parameter. The minimal supergravity multiplet, which was introduced by Howe in 1981, emerges if one couples the Weyl multiplet to an Abelian vector multiplet and then breaks the super-Weyl invariance by imposing the gauge condition W=1, with W the field strength of the vector multiplet. The geometry of superspace is shown to allow the existence of a large family of off-shell supermultiplets that possess uniquely determined super-Weyl transformation laws and can be used to describe supersymmetric matter. Many of these supermultiplets have not appeared within the superconformal tensor calculus. We formulate a manifestly locally supersymmetric and super-Weyl invariant action principle. In the super-Weyl gauge W=1, this action reduces to that constructed in arXiv:0712.3102. We also present a superspace formulation for the dilaton Weyl multiplet.
This paper is a companion to our earlier work arXiv:0710.3440 in which the projective superspace formulation for matter-coupled simple supergravity in five dimensions was presented. For the minimal multiplet of 5D N=1 supergravity introduced by Howe in 1981, we give a complete solution of the Bianchi identities. The geometry of curved superspace is shown to allow the existence of a large family of off-shell supermultiplets that can be used to describe supersymmetric matter, including vector multiplets and hypermultiplets. We formulate a manifestly locally supersymmetric action principle. Its natural property turns out to be the invariance under so-called projective transformations of the auxiliary isotwistor variables. We then demonstrate that the projective invariance allows one to uniquely restore the action functional in a Wess-Zumino gauge. The latter action is well-suited for reducing the supergravity-matter systems to components.
We study 5-dimensional supergravity on S^1/Z_2 with a physical Z_2-odd vector multiplet, which yields an additional modulus other than the radion. We derive 4-dimensional effective theory and find additional terms in the Kahler potential that are peculiar to the multi moduli case. Such terms can avoid tachyonic soft scalar masses at tree-level, which are problematic in the single modulus case. We also show that the flavor structure of the soft terms are different from that in the single modulus case when hierarchical Yukawa couplings are generated by wavefunction localization in the fifth dimension. We present a concrete model that stabilizes the moduli at a supersymmetry breaking Minkowski minimum, and show the low energy sparticle spectrum.
134 - Hiroyuki Abe 2007
We present a systematic way for deriving a four-dimensional (4D) effective action of the five-dimensional (5D) orbifold supergravity respecting the N=1 {it off-shell} structure. As an illustrating example, we derive a 4D effective theory of the 5D gauged supergravity with a universal hypermultiplet and {it generic} gaugings, which includes the 5D heterotic M-theory and the supersymmetric Randall-Sundrum model as special limits of the gauging parameters. We show the vacuum structure of such model, especially the nature of moduli stabilization, introducing perturbative superpotential terms at the orbifold fixed points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا