Do you want to publish a course? Click here

Coexistence and competition of multiple charge-density-wave orders in rare-earth tri-telluride RTe3

223   0   0.0 ( 0 )
 Added by Bingfeng Hu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The occurrences of collective quantum states, such as superconductivity (SC) and charge- or spin-densitywaves (CDWs or SDWs), are among the most fascinating phenomena in solids. To date much effort has been made to explore the interplay between different orders, yet little is known about the relationship of multiple orders of the same type. Here we report optical spectroscopy study on CDWs in the rare-earth tri-telluride compounds RTe3 (R = rare earth elements). Besides the prior reported two CDW orders, the study reveals unexpectedly the presence of a third CDW order in the series which evolves systematically with the size of R element. With increased chemical pressure, the first and third CDW orders are both substantially suppressed and compete with the second one by depleting the low energy spectral weight. A complete phase diagram for the multiple CDW orders in this series is established.



rate research

Read More

We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of $R$Te$_3$.
197 - F. Zamborszky , W. Yu , W. Raas 2002
(TMTTF)2AsF6 undergoes two phase transitions upon cooling from 300 K. At Tco=103 K a charge-ordering (CO) occurs, and at Tsp(B=9 T)=11 K the material undergoes a spin-Peierls (SP) transition. Within the intermediate, CO phase, the charge disproportionation ratio is found to be at least 3:1 from carbon-13 NMR 1/T1 measurements on spin-labeled samples. Above Tsp, up to about 3Tsp, 1/T1 is independent of temperature, indicative of low-dimensional magnetic correlations. With the application of about 0.15 GPa pressure, Tsp increases substantially, while Tco is rapidly suppressed, demonstrating that the two orders are competing. The experiments are compared to results obtained from calculations on the 1D extended Peierls-Hubbard model.
518 - W. S. Lee , A. P. Sorini , M. Yi 2012
We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the $M_5$ (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te$_2$ planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states,we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.
184 - B. F. Hu , P. Zheng , R. H. Yuan 2010
We performed optical spectroscopy measurement on single crystal of CeTe$_3$, a rare-earth element tri-telluride charge density wave (CDW) compound. The optical spectra are found to display very strong temperature dependence. Besides a large and pronounced CDW energy gap being present already at room temperature as observed in earlier studies, the present measurement revealed the formation of another energy gap at smaller energy scale at low temperature. The second CDW gap removes the electrons near E$_F$ which undergo stronger scattering. The study yields evidence for the presence of multiple CDW orders or strong fluctuations in the light rare-earth element tri-telluride.
We report measurements of the magnetoresistance in the charge density wave (CDW) state of rare-earth tritellurides, namely TbTe$_3$ and HoTe$_3$. The magnetic field dependence of magnetoresistance exhibits a temperature dependent crossover between a conventional quadratic law at high $T$ and low $B$ and an unusual linear dependence at low $T$ and high $B$. We present a quite general model to explain the linear magnetoresistance taking into account the strong scattering of quasiparticles on CDW fluctuations in the vicinity of hot spots of the Fermi surface (FS) where the FS reconstruction is the strongest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا