We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass and luminosity to be detected. Accretion stops and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship between detected pulsation properties for a sample of young stars and their evolutionary status illustrating the potential of asteroseismology for the early evolutionary phases.