Do you want to publish a course? Click here

Effective theory of vortices in two-dimensional spinless chiral $p$-wave superfluids

160   0   0.0 ( 0 )
 Added by Babak Seradjeh
 Publication date 2014
  fields Physics
and research's language is English
 Authors Daniel Ariad




Ask ChatGPT about the research

We propose a $mathbb{U}(1) times mathbb{Z}_2$ effective gauge theory for vortices in a $p_x+ip_y$ superfluid in two dimensions. The combined gauge transformation binds $mathbb{U}(1)$ and $mathbb{Z}_2$ defects so that the total transformation remains single-valued and manifestly preserves the the particle-hole symmetry of the action. The $mathbb{Z}_2$ gauge field introduces a complete Chern-Simons term in addition to a partial one associated with the $mathbb{U}(1)$ gauge field. The theory reproduces the known physics of vortex dynamics such as a Magnus force proportional to the superfluid density. More importantly, it predicts a universal Abelian phase, $exp(ipi/8)$, upon the exchange of two vortices. This phase is modified by non-universal corrections due to the partial Chern-Simon term, which are nevertheless screened in a charged superfluid at distances that are larger than the penetration depth.



rate research

Read More

The possible stable singular vortex (SV) and half-quantum vortex (HQV) of the superfluid $^3$He-A phase confined in restricted geometries are investigated. The associated low-energy excitations are calculated in connection with the possible existence of Majorana zero modes obeying non-Abelian statistics. The energetics between those vortices is carefully examined using the standard Ginzburg-Landau (GL) functional with a strong-coupling correction. The Fermi liquid effect, which is not included in the GL functional, is considered approximately within the London approach. This allows us to determine the stability regions in pressure, temperature, and applied field for SV and HQV. The existence of the Majorana zero mode and its statistics, either Abelian or non-Abelian under braiding of SVs, is studied by solving the Bogoliubov-de Gennes equation for spinful chiral p-wave superfluids at sufficiently low temperatures. We determined several conditions controllable external parameters for realizing the non-Abelian statistics of Majorana zero modes e.g., pressure, field direction, and strength.
140 - C. Kallin , A. J. Berlinsky 2009
Much excitement surrounds the possibility that strontium ruthenate exhibits chiral p-wave superconducting order. Such order would be a solid state analogue of the A phase of He-3, with the potential for exotic physics relevant to quantum computing. We take a critical look at the evidence for such time-reversal symmetry breaking order. The possible superconducting order parameter symmetries and the evidence for and against chiral p-wave order are reviewed, with an emphasis on the most recent theoretical predictions and experimental observations. In particular, attempts to reconcile experimental observations and theoretical predictions for the spontaneous supercurrents expected at sample edges and domain walls of a chiral p-wave superconductor and for the polar Kerr effect, a key signature of broken time-reversal symmetry, are discussed.
100 - Jaakko Nissinen 2019
Momentum transport is anomalous in chiral $p+ip$ superfluids and superconductors in the presence of textures and superflow. Using the gradient expansion of the semi-classical approximation, we show how gauge and Galilean symmetries induce an emergent curved spacetime with torsion and curvature for the quasirelativistic low-energy Majorana-Weyl quasiparticles. We explicitly show the emergence of the spin-connection and curvature, in addition to torsion, using the superfluid hydrodynamics. The background constitutes an emergent quasirelativistic Riemann-Cartan spacetime for the Weyl quasiparticles and they satisfy the conservation laws associated with local Lorentz symmetry, restricted to the plane of uniaxial anisotropy of the superfluid (or -conductor). Moreover, we show that the anomalous Galilean momentum conservation is a consequence of the gravitational Nieh-Yan (NY) chiral anomaly the Weyl fermions experience on the background geometry. Notably, the NY anomaly coefficient features a non-universal ultraviolet cut-off scale $Lambda$, with canonical dimensions of momentum. Comparison of the anomaly equation and the hydrodynamic equations suggests that the value of the cut-off parameter $Lambda$ is determined by the normal state Fermi liquid and non-relativistic uniaxial symmetry of the $p$-wave superfluid or superconductor.
394 - L. Yang , W. S. Wang , D. Wang 2018
We investigate the superconductivity (SC) driven by correlation effects in electron-doped bilayer BiH near a type-II van Hove singularity (vHS). By functional renormalization group, we find triplet $p$-wave pairing prevails in the interaction parameter space, except for spin density wave (SDW) closer to the vHS or when the interaction is too strong. Because of the large atomic spin-orbital coupling (SOC), the $p$-wave pairing occurs between equal-spin electrons, and is chiral and two-fold degenerate. The chiral state supports in-gap edge states, even though the low energy bands in the SC state are topologically trivial. The absence of mirror symmetry allows Rashba SOC that couples unequal spins, but we find its effect is of very high order, and can only drive the chiral $p$-wave into helical $p$-wave deep in the SC state. Interestingly, there is a six-fold degeneracy in the helical states, reflected by the relative phase angle $theta=npi/3$ (for integer $n$) between the spin components of the helical pairing function. The phase angle is shown to be stable in the vortex state.
It has been widely believed that half quantum vortices are indispensable to realize topological stable Majorana zero modes and non-Abelian anyons in spinful superconductors/superfluids. Contrary to this wisdom, we here demonstrate that integer quantum vortices in spinful superconductors can host topologically stable Majorana zero modes because of the mirror symmetry. The symmetry protected Majorana fermions may exhibit non-Abelian anyon braiding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا