Do you want to publish a course? Click here

On the Erdos Discrepancy Problem

212   0   0.0 ( 0 )
 Added by Ronan Le Bras
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

According to the ErdH{o}s discrepancy conjecture, for any infinite $pm 1$ sequence, there exists a homogeneous arithmetic progression of unbounded discrepancy. In other words, for any $pm 1$ sequence $(x_1,x_2,...)$ and a discrepancy $C$, there exist integers $m$ and $d$ such that $|sum_{i=1}^m x_{i cdot d}| > C$. This is an $80$-year-old open problem and recent development proved that this conjecture is true for discrepancies up to $2$. Paul ErdH{o}s also conjectured that this property of unbounded discrepancy even holds for the restricted case of completely multiplicative sequences (CMSs), namely sequences $(x_1,x_2,...)$ where $x_{a cdot b} = x_{a} cdot x_{b}$ for any $a,b geq 1$. The longest CMS with discrepancy $2$ has been proven to be of size $246$. In this paper, we prove that any completely multiplicative sequence of size $127,646$ or more has discrepancy at least $4$, proving the ErdH{o}s discrepancy conjecture for CMSs of discrepancies up to $3$. In addition, we prove that this bound is tight and increases the size of the longest known sequence of discrepancy $3$ from $17,000$ to $127,645$. Finally, we provide inductive construction rules as well as streamlining methods to improve the lower bounds for sequences of higher discrepancies.



rate research

Read More

A Group Labeled Graph is a pair $(G,Lambda)$ where $G$ is an oriented graph and $Lambda$ is a mapping from the arcs of $G$ to elements of a group. A (not necessarily directed) cycle $C$ is called non-null if for any cyclic ordering of the arcs in $C$, the group element obtained by `adding the labels on forward arcs and `subtracting the labels on reverse arcs is not the identity element of the group. Non-null cycles in group labeled graphs generalize several well-known graph structures, including odd cycles. In this paper, we prove that non-null cycles on Group Labeled Graphs have the half-integral Erdos-Posa property. That is, there is a function $f:{mathbb N}to {mathbb N}$ such that for any $kin {mathbb N}$, any group labeled graph $(G,Lambda)$ has a set of $k$ non-null cycles such that each vertex of $G$ appears in at most two of these cycles or there is a set of at most $f(k)$ vertices that intersects every non-null cycle. Since it is known that non-null cycles do not have the integeral Erdos-Posa property in general, a half-integral Erdos-Posa result is the best one could hope for.
We study the (hereditary) discrepancy of definable set systems, which is a natural measure for their inherent complexity and approximability. We establish a strong connection between the hereditary discrepancy and quantifier elimination over signatures with only unary relation and function symbols. We prove that set systems definable in theories (over such signatures) with quantifier elimination have constant hereditary discrepancy. We derive that set systems definable in bounded expansion classes, which are very general classes of uniformly sparse graphs, have bounded hereditary discrepancy. We also derive that nowhere dense classes, which are more general than bounded expansion classes, in general do not admit quantifier elimination over a signature extended by an arbitrary number of unary function symbols. We show that the set systems on a ground set $U$ definable on a monotone nowhere dense class of graphs $mathscr C$ have hereditary discrepancy at most $|U|^{c}$ (for some~$c<1/2$) and that, on the contrary, for every monotone somewhere dense class $mathscr C$ and for every positive integer $d$ there is a set system of $d$-tuples definable in $mathscr C$ with discrepancy $Omega(|U|^{1/2})$. We further prove that if $mathscr C$ is a class of graphs with bounded expansion and $phi(bar x;bar y)$ is a first-order formula, then we can compute in polynomial time, for an input graph $Ginmathscr C$, a mapping $chi:V(G)^{|bar x|}rightarrow{-1,1}$ witnessing the boundedness of the discrepancy of the set-system defined by~$phi$, an $varepsilon$-net of size $mathcal{O}(1/varepsilon)$, and an $varepsilon$-approximation of size $mathcal{O}(1/varepsilon)$.
We give an $O(n^4)$ algorithm to find a minimum clique cover of a (bull, $C_4$)-free graph, or equivalently, a minimum colouring of a (bull, $2K_2$)-free graph, where $n$ is the number of vertices of the graphs.
A long-standing conjecture by Heath, Pemmaraju, and Trenk states that the upward book thickness of outerplanar DAGs is bounded above by a constant. In this paper, we show that the conjecture holds for subfamilies of upward outerplanar graphs, namely those whose underlying graph is an internally-triangulated outerpath or a cactus, and those whose biconnected components are $at$-outerplanar graphs. On the complexity side, it is known that deciding whether a graph has upward book thickness $k$ is NP-hard for any fixed $k ge 3$. We show that the problem, for any $k ge 5$, remains NP-hard for graphs whose domination number is $O(k)$, but it is FPT in the vertex cover number.
We introduce and investigate the approximability of the maximum binary tree problem (MBT) in directed and undirected graphs. The goal in MBT is to find a maximum-sized binary tree in a given graph. MBT is a natural variant of the well-studied longest path problem, since both can be viewed as finding a maximum-sized tree of bounded degree in a given graph. The connection to longest path motivates the study of MBT in directed acyclic graphs (DAGs), since the longest path problem is solvable efficiently in DAGs. In contrast, we show that MBT in DAGs is in fact hard: it has no efficient $exp(-O(log n/ log log n))$-approximation algorithm under the exponential time hypothesis, where $n$ is the number of vertices in the input graph. In undirected graphs, we show that MBT has no efficient $exp(-O(log^{0.63}{n}))$-approximation under the exponential time hypothesis. Our inapproximability results rely on self-improving reductions and structural properties of binary trees. We also show constant-factor inapproximability assuming $text{P} eq text{NP}$. In addition to inapproximability results, we present algorithmic results along two different flavors: (1) We design a randomized algorithm to verify if a given directed graph on $n$ vertices contains a binary tree of size $k$ in $2^k text{poly}(n)$ time. (2) Motivated by the longest heapable subsequence problem, introduced by Byers, Heeringa, Mitzenmacher, and Zervas (ANALCO 2011), which is equivalent to MBT in permutation DAGs, we design efficient algorithms for MBT in bipartite permutation graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا