Do you want to publish a course? Click here

Color--Mass-to-Light Ratio Relations for Disk Galaxies

133   0   0.0 ( 0 )
 Added by Stacy McGaugh
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine Spitzer $3.6mu$ observations of a sample of disk galaxies spanning over 10 magnitudes in luminosity with optical luminosities and colors to test population synthesis prescriptions for computing stellar mass. Many commonly employed models fail to provide self-consistent results: the stellar mass estimated from the luminosity in one band can differ grossly from that of another band for the same galaxy. Independent models agree closely in the optical ($V$-band), but diverge at longer wavelengths. This effect is particularly pronounced in recent models with substantial contributions from TP-AGB stars. We provide revised color--mass-to-light ratio relations that yield self-consistent stellar masses when applied to real galaxies. The $B-V$ color is a good indicator of the mass-to-light ratio. Some additional information is provided by $V-I$, but neither it nor $J-K_s$ are particularly useful for constraining the mass-to-light ratio on their own. In the near-infrared, the mass-to-light ratio depends weakly on color, with typical values of $0.6; mathrm{M}_{odot}/mathrm{L}_{odot}$ in the $K_s$-band and $0.47; mathrm{M}_{odot}/mathrm{L}_{odot}$ at $3.6mu$.



rate research

Read More

We present new Spitzer 3.6 micron observations of a sample of disk galaxies spanning over 10 magnitudes in luminosity and ranging in gas fraction from ~10% to over 90%. We use these data to test population synthesis prescriptions for computing stellar mass. Many commonly employed models fail to provide self-consistent stellar masses in the sense that the stellar mass estimated from the optical luminosity typically exceeds that estimated from the near-infrared (NIR) luminosity. This problem is present in models both with and without TP-AGB stars, but is more severe in the former. Self-consistency can be achieved if NIR mass-to-light ratios are approximately constant with a mean value near 0.5 Msun/Lsun at 3.6 microns. We use the Baryonic Tully-Fisher relation calibrated by gas rich galaxies to provide an independent estimate of the color-mass to light ratio relation. This approach also suggests that the typical 3.6 micron mass-to-light ratio is 0.5 (0.65 in the K band) for rotationally supported galaxies. These values are consistent with a Kroupa IMF.
We derive the stellar-to-halo mass relations, SHMR, of local blue and red central galaxies separately, as well as the fraction of halos hosting blue/red central galaxies. We find that: 1) the SHMR of central galaxies is segregated by color, with blue centrals having a SHMR above the one of red centrals; at logMh~12, the Ms/Mh ratio of the blue centrals is ~0.05, which is ~1.7 times larger than the value of red centrals. 2) The intrinsic scatters of the SHMRs of red and blue centrals are ~0.14 and ~0.11dex, respectively. The intrinsic scatter of the average SHMR of all central galaxies changes from ~0.20dex to ~0.14dex in the 11.3<logMh<15 range. 3) The fraction of halos hosting blue centrals at Mh=1E11Msun is 87%, but at 2x1E12Msun decays to ~20%, approaching to a few per cents at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is Mh~7x1E11Msun. Our results suggest that the SHMR of central galaxies at large masses is shaped by halo mass quenching (likely through shock virial heating and AGN feedback), but group richness also plays an important role: central galaxies living in less dense environments quenched their star formation later or did not quench it yet. At low masses, processes that delay star formation without invoking too strong supernova-driven outflows could explain the high Ms/Mh ratios of blue centrals as compared to those of the scarce red centrals.
We analyze the stellar mass-to-light ratio (M/L) gradients in a large sample of local galaxies taken from the Sloan Digital Sky Survey, spanning a wide range of stellar masses and morphological types. As suggested by the well known relationship between M/L ratios and colors, we show that M/L gradients are strongly correlated with colour gradients, which we trace to the effects of age variations. Stellar M/L gradients generally follow patterns of variation with stellar mass and galaxy type that were previous found for colour and metallicty gradients. In late-type galaxies M/L gradients are negative, steepening with increasing mass. In early-type galaxies M/L gradients are shallower while presenting a two-fold trend: they decrease with mass up to a characteristic mass of M* sim 10^10.3 M_sun and increase at larger masses. We compare our findings with other analyses and discuss some implications for galaxy formation and for dark matter estimates.
We combine new data from the main sequence (M_* versus SFR) of star-forming galaxies and galaxy colors (from GALEX to Spitzer) with a flexible stellar population scheme to deduce the mass-to-light ratio (Upsilon_*) of star-forming galaxies from the SPARC and S^4G samples. We find that the main sequence for galaxies, particular the low-mass end, combined with the locus of galaxy colors, constrains the possible star formation histories of disk and dwarf galaxies to a similar shape found by Speagle et al. (2014). Combining the deduced star formation history with stellar population models in the literature produces reliable Upsilon_* values as a function of galaxy color with an uncertainty of only 0.05 dex. We provide prescriptions to deduce Upsilon_* for optical and near-IR bandpasses, with near-IR bandpasses having the least uncertainty (Upsilon_* from 0.40 to 0.55). We also provide the community with a webtool, with flexible stellar population parameters, to generate their own Upsilon_* values over the wavelength range for most galaxy surveys.
101 - Guangwen Chen , Xufen Wu , Xu Kong 2018
Collisional ring galaxies (CRGs) are formed through off-center collisions between a target galaxy and an intruder dwarf galaxy. We study the mass distribution and kinematics of the CRGs by tuning the bulge-to-disk mass ratio ($B/D$) for the progenitor; i.e., the target galaxy. We find that the lifetime of the ring correlates with the initial impact velocity vertical to the disk plane (i.e., $v_{z0}$). Three orbits for the collisional galaxy pair, on which clear and asymmetric rings form after collisions, are selected to perform the textit{N}-body simulations at different values of $B/D$ for the progenitor. It is found that the ring structures are the strongest for the CRGs with small values of $B/D$. The S{e}rsic index, $n$, of the central remnant in the target galaxy becomes larger after collision. Moreover, the S{e}rsic index of a central remnant strongly correlates with the initial value of $B/D$ for the progenitor. A bulge-less progenitor results in a late-type object in the center of the ring galaxy, whereas a bulge-dominated progenitor leads to an early-type central remnant. Progenitors with $B/Din [0.1,~0.3]$ (i.e., minor bulges) leave central remnants with $napprox 4$. These results provide a possible explanation for the formation of a recently observed CRG with an early-type central nucleus, SDSS J1634+2049. In addition, we find that the radial and azimuthal velocity profiles for a ring galaxy are more sensitive to the $B/D$ than the initial relative velocity of the progenitor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا