Do you want to publish a course? Click here

Dielectric Square Resonator Investigated with Microwave Experiments

239   0   0.0 ( 0 )
 Added by Stefan Bittner
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator. Both the resonance spectra and the field distributions were measured. The momentum space representations of the latter evidenced that the resonant states are each related to a specific classical torus, leading to the regular structure of the spectrum. Furthermore, they allow for a precise determination of the refractive index. Measurements with different arrangements of the emitting and the receiving antennas were performed and their influence on the symmetry properties of the field distributions was investigated in detail, showing that resonances with specific symmetries can be selected purposefully. In addition, the length spectrum deduced from the measured resonance spectra and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model.



rate research

Read More

We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum representation of the measured field distributions shows that all resonant modes are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model was developed. It shows excellent agreement with all but a single class of measured field distributions that will be treated separately.
We show that global lower bounds to the mode volume of a dielectric resonator can be computed via Lagrangian duality. State-of-the-art designs rely on sharp tips, but such structures appear to be highly sub-optimal at nanometer-scale feature sizes, and we demonstrate that computational inverse design offers orders-of-magnitude possible improvements. Our bound can be applied for geometries that are simultaneously resonant at multiple frequencies, for high-efficiency nonlinear-optics applications, and we identify the unavoidable penalties that must accompany such multiresonant structures.
Deformed square resonators with the flat sides replaced by circular sides are proposed and demonstrated to enhance mode Q factors and adjust transverse mode intervals using the regular ray dynamic analysis and numerical simulations. Dual-transverse-mode emissions due to the ultrahigh-Q factors with different wavelength intervals are realized experimentally for AlGaInAs/InP circular-side square microlasers, and the stationary condition of the dual-mode emission is satisfied because the high-Q confined modes have totally different mode numbers. Furthermore, optical frequency combs are generated using the dual-mode lasing microlaser as a seeding light source by cascaded four-wave mixing in a highly nonlinear optical fiber.
In this paper, we propose a novel design of dielectric laser-driven accelerator (DLA) utilizing evanescent electric field of racetrack ring resonator structures. Driven by laser light with the correctly designed optical phase window, sustained acceleration of electrons with controlled deflection is shown. Based on this design, we calculate an acceleration from 30 keV to 148.312 keV in 104.655 {mu}m using a cascaded 11-stage racetrack ring resonators. This new idea poses a solution for on-chip integration of many DLA stages, while maintains high average accelerating gradients, providing a potential practical realization for accelerator on a chip.
We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a low-loss, tunable Si3N4 optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا