Hyperfine coupling and spin polarization in the bulk of the topological insulator Bi$_2$Se$_3$


Abstract in English

Nuclear magnetic resonance (NMR) and transport measurements have been performed at high magnetic fields and low temperatures in a series of $n$-type Bi$_{2}$Se$_{3}$ crystals. In low density samples, a complete spin polarization of the electronic system is achieved, as observed from the saturation of the isotropic component of the $^{209}$Bi NMR shift above a certain magnetic field. The corresponding spin splitting, defined in the phenomenological approach of a 3D electron gas with a large (spin-orbit-induced) effective $g$-factor, scales as expected with the Fermi energy independently determined by simultaneous transport measurements. Both the effective electronic $g$-factor and the contact hyperfine coupling constant are precisely determined. The magnitude of this latter reveals a non negligible $s$-character of the electronic wave function at the bottom of the conduction band. Our results show that the bulk electronic spin polarization can be directly probed via NMR and pave the way for future NMR investigations of the electronic states in Bi-based topological insulators.

Download