Do you want to publish a course? Click here

External constraints on optimal control strategies in molecular orientation and photofragmentation: Role of zero-area fields

428   0   0.0 ( 0 )
 Added by Sugny Dominique
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new formulation of optimal and local control algorithms which enforces the constraint of time-integrated zero-area on the control field. The fulfillment of this requirement, crucial in many physical applications, is mathematically implemented by the introduction of a Lagrange multiplier aiming at penalizing the pulse area. This method allows to design a control field with an area as small as possible, while bringing the dynamical system close to the target state. We test the efficiency of this approach on two control purposes in molecular dynamics, namely, orientation and photodissociation.



rate research

Read More

172 - M. Ndong , C. Koch , D. Sugny 2013
We apply two recent generalizations of monotonically convergent optimization algorithms to the control of molecular orientation by laser fields. We show how to minimize the control duration by a step-wise optimization and maximize the field-free molecular orientation using state-dependent constraints. We discuss the physical relevance of the different results.
57 - O. Atabek , C. M. Dion 2002
Genetic algorithms, as implemented in optimal control strategies, are currently successfully exploited in a wide range of problems in molecular physics. In this context, laser control of molecular alignment and orientation remains a very promising issue with challenging applications extending from chemical reactivity to nanoscale design. We emphasize the complementarity between basic quantum mechanisms monitoring alignment/orientation processes and optimal control scenarios. More explicitly, if on one hand we can help the optimal control scheme to take advantage of such mechanisms by appropriately building the targets and delineating the parameter sampling space, on the other hand we expect to learn, from optimal control results, some robust and physically sound dynamical mechanisms. We present basic mechanisms for alignment and orientation, such as pendular states accommodated by the molecule-plus-field effective potential and the kick mechanism obtained by a sudden excitation. Very interestingly, an optimal control scheme for orientation, based on genetic algorithms, also leads to a sudden pulsed field bearing the characteristic features of the kick mechanism. Optimal pulse shaping for very efficient and long-lasting orientation, together with robustness with respect to temperature effects, are among our future prospects.
By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary $m$-state in two-dimensional Schr{o}dinger wave equation with various power interaction potentials in constant magnetic and Aharonov-Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We calculate the energy levels of some diatomic molecules in the presence and absence of external magnetic and AB flux fields using different potential models. We found that the effect of the Aharonov-Bohm field is much as it creates a wider shift for $m eq 0$ and its influence on $m=0$ states is found to be greater than that of the magnetic field. To show the accuracy of the present model, a comparison is made with those ones obtained in the absence of external fields. An extension to 3-dimensional quantum system have also been presented.
We study dipolar relaxation in both ultra-cold thermal and Bose-condensed chromium atom gases. We show three different ways to control dipolar relaxation, making use of either a static magnetic field, an oscillatory magnetic field, or an optical lattice to reduce the dimensionality of the gas from 3D to 2D. Although dipolar relaxation generally increases as a function of a static magnetic field intensity, we find a range of non-zero magnetic field intensities where dipolar relaxation is strongly reduced. We use this resonant reduction to accurately determine the S=6 scattering length of chromium atoms: $a_6 = 103 pm 4 a_0$. We compare this new measurement to another new determination of $a_6$, which we perform by analysing the precise spectroscopy of a Feshbach resonance in d-wave collisions, yielding $a_6 = 102.5 pm 0.4 a_0$. These two measurements provide by far the most precise determination of $a_6$ to date. We then show that, although dipolar interactions are long-range interactions, dipolar relaxation only involves the incoming partial wave $l=0$ for large enough magnetic field intensities, which has interesting consequences on the stability of dipolar Fermi gases. We then study ultra-cold chromium gases in a 1D optical lattice resulting in a collection of independent 2D gases. We show that dipolar relaxation is modified when the atoms collide in reduced dimensionality at low magnetic field intensities, and that the corresponding dipolar relaxation rate parameter is reduced by a factor up to 7 compared to the 3D case. Finally, we study dipolar relaxation in presence of radio-frequency (rf) oscillating magnetic fields, and we show that both the output channel energy and the transition amplitude can be controlled by means of rf frequency and Rabi frequency.
Quantum optimal control represents a powerful technique to enhance the performance of quantum experiments by engineering the controllable parameters of the Hamiltonian. However, the computational overhead for the necessary optimization of these control parameters drastically increases as their number grows. We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields, which allows us to find optimal control fields efficiently. We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems showing an inhomogeneous broadening. The control fields optimized with the phase-modulated method provide an increased robustness against such ensemble inhomogeneities as well as control-field fluctuations and environmental noise, with one order of magnitude less of average search time. Robustness enhancement of single quantum gates is also achieved by the phase-modulated method. Under environmental noise, an XY-8 sequence constituted by optimized gates prolongs the coherence time by $50%$ compared with standard rectangular pulses in our numerical simulations, showing the application potential of our phase-modulated method in improving the precision of signal detection in the field of quantum sensing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا