No Arabic abstract
Starting from the original Majoranas article of 1937, the see-saw mechanism is illustrated, first for one and later for three neutrino generations, and neutrinoless double beta decay is considered. Neutrino mixing and oscillations in three flavors are described. The Yukawa couplings to the Higgs field of quarks and leptons are considered, their transformation properties under the corresponding flavor groups are spelled out and the principle of Minimal Flavor Violation is illustrated, in connection with possible new physics beyond the Standard Theory. The idea that the Yukawa couplings may be the vacuum expectation value of some new fields is introduced and natural extrema of potentials which are invariant under quark and lepton flavor groups are characterized. A recent result indicating large mixing of almost degenerate neutrinos is derived from the heavy lepton invariance under flavor ${cal O}(3)$.
The search for the origin of cosmic rays is as active as ever, mainly driven by new insights provided by recent pieces of observation. Much effort is being channelled in putting the so called supernova paradigm for the origin of galactic cosmic rays on firmer grounds, while at the highest energies we are trying to understand the observed cosmic ray spectra and mass composition and relating them to potential sources of extragalactic cosmic rays. Interestingly, a topic that has acquired a dignity of its own is the investigation of the transition region between the galactic and extragalactic components, once associated with the ankle and now increasingly thought to be taking place at somewhat lower energies. Here we summarize recent developments in the observation and understanding of galactic and extragalactic cosmic rays and we discuss the implications of such findings for the modelling of the transition between the two.
Nuclear physics, whose underling theory is described by quantum gauge field coupled with matter, is fundamentally important and yet is formidably challenge for simulation with classical computers. Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics. With rapid scaling-up of quantum processors as well as advances on quantum algorithms, the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attentions. In this review, we aim to summarize recent efforts on solving nuclear physics with quantum computers. We first discuss a formulation of nuclear physics in the language of quantum computing. In particular, we review how quantum gauge fields~(both Abelian and non-Abelian) and its coupling to matter field can be mapped and studied on a quantum computer. We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems, and show their applications for a broad range of problems in nuclear physics, including simulation of lattice gauge field, solving nucleon and nuclear structure, quantum advantage for simulating scattering in quantum field theory, non-equilibrium dynamics, and so on. Finally, a short outlook on future work is given.
Some of the last results on low energy antiproton physics are reviewed. First Faddeev calculations for ={n}d scattering length are presented.
Geometric (Aharonov--Anandan) phases in neutrino oscillations have been claimed [Phys. Lett. B 780 (2018) 216] to be sensitive to the Majorana phases in neutrino mixing. More recently, however, it has been pointed out [Phys. Lett. B 818 (2021) 136376] that the proposed phases are not gauge invariant. Using both kinematic and geometric approaches, we show that all gauge-invariant Aharonov--Anandan phases (including the off-diagonal geometric phases associated with flavor transitions) are independent of the Majorana phases. This finding, which generalizes the well-known fact that conventional oscillation experiments cannot discern the Dirac or Majorana nature of the neutrino, implies that a hypothetical interference experiment cannot distinguish between the two either.
The most recent results of the top-quark mass measurements at the Tevatron at Fermilab are presented. Data were collected in proton-antiproton collisions at sqrt{s}=1.96 TeV by the CDF and D0 experiments. Top quark mass measurements in the lepton+jets, dilepton and alljet final states as well as their combination and the extraction of the mass from the cross-section measurement are presented.