No Arabic abstract
We present a way to combine Vlasov and two-fluid codes for the simulation of a collisionless plasma in large domains while keeping full information of the velocity distribution in localized areas of interest. This is made possible by solving the full Vlasov equation in one region while the remaining area is treated by a 5-moment two-fluid code. In such a treatment, the main challenge of coupling kinetic and fluid descriptions is the interchange of physically correct boundary conditions between the different plasma models. In contrast to other treatments, we do not rely on any specific form of the distribution function, e.g. a Maxwellian type. Instead, we combine an extrapolation of the distribution function and a correction of the moments based on the fluid data. Thus, throughout the simulation both codes provide the necessary boundary conditions for each other. A speed-up factor of around 20 is achieved by using GPUs for the computationally expensive solution of the Vlasov equation and an overall factor of at least 60 using the coupling strategy combined with the GPU computation. The coupled codes were then tested on the GEM reconnection challenge.
Many phenomena in collisionless plasma physics require a kinetic description. The evolution of the phase space density can be modeled by means of the Vlasov equation, which has to be solved numerically in most of the relevant cases. One of the problems that often arise in such simulations is the violation of important physical conservation laws. Numerical diffusion in phase space translates into unphysical heating, which can increase the overall energy significantly, depending on the time scale and the plasma regime. In this paper, a general and straightforward way of improving conservation properties of Vlasov schemes is presented that can potentially be applied to a variety of different codes. The basic idea is to use fluid models with good conservation properties for correcting kinetic models. The higher moments that are missing in the fluid models are provided by the kinetic codes, so that both kinetic and fluid codes compensate the weaknesses of each other in a closed feedback loop.
In this paper, our goal is to efficiently solve the Vlasov equation on GPUs. A semi-Lagrangian discontinuous Galerkin scheme is used for the discretization. Such kinetic computations are extremely expensive due to the high-dimensional phase space. The SLDG code, which is publicly available under the MIT license abstracts the number of dimensions and uses a shared codebase for both GPU and CPU based simulations. We investigate the performance of the implementation on a range of both Tesla (V100, Titan V, K80) and consumer (GTX 1080 Ti) GPUs. Our implementation is typically able to achieve a performance of approximately 470 GB/s on a single GPU and 1600 GB/s on four V100 GPUs connected via NVLink. This results in a speedup of about a factor of ten (comparing a single GPU with a dual socket Intel Xeon Gold node) and approximately a factor of 35 (comparing a single node with and without GPUs). In addition, we investigate the effect of single precision computation on the performance of the SLDG code and demonstrate that a template based dimension independent implementation can achieve good performance regardless of the dimensionality of the problem.
Because of the large mass differences between electrons and ions, the heat diffusion in electron-ion plasmas exhibits more complex behavior than simple heat diffusion found in typical gas mixtures. In particular, heat is diffused in two distinct, but coupled, channels. Conventional single fluid models neglect the resulting complexity, and can often inaccurately interpret the results of heat pulse experiments. However, by recognizing the sensitivity of the electron temperature evolution to the ion diffusivity, not only can previous experiments be interpreted correctly, but informative simultaneous measurements can be made of both ion and electron heat channels.
We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts to using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development of Denavits Forward Semi-Lagrangian (FSL) scheme [J. Denavit, J. Comp. Physics 9, 75 (1972)]. However, it has recently been established [M. Campos Pinto, Smooth particle methods without smoothing, arXiv:1112.1859 (2012)] that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.
The particle-in-cell (PIC) method is widely used to model the self-consistent interaction between discrete particles and electromagnetic fields. It has been successfully applied to problems across plasma physics including plasma based acceleration, inertial confinement fusion, magnetically confined fusion, space physics, astrophysics, high energy density plasmas. In many cases the physics involves how relativistic particles are generated and interact with plasmas. However, when relativistic particles stream across the grid both in vacuum and in plasma there are many numerical issues that may arise which can lead to incorrect physics. We present a detailed analysis of how discretized Maxwell solvers used in PIC codes can lead to numerical errors to the fields that surround particles that move at relativistic speeds across the grid. Expressions for the axial electric field as integrals in k space are presented. Two types of errors to these expressions are identified. The first arises from errors to the numerator of the integrand and leads to unphysical fields that are antisymmetric about the particle. The second arises from errors to the denominator of the integrand and lead to Cerenkov like radiation in vacuum. These fields are not anti-symmetric, extend behind the particle, and cause the particle to accelerate or decelerate depending on the solver and parameters. The unphysical fields are studied in detail for two representative solvers - the Yee solver and the FFT based solver. A solution for eliminating these unphysical fields by modifying the k operator in the axial direction is also presented. Using a customized finite difference solver, this solution was successfully implemented into OSIRIS. Results from the customized solver are also presented. This solution will be useful for a beam of particles that all move in one direction with a small angular divergence.